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a  b  s  t  r  a  c  t

Knowledge  on trade-offs  and  synergies  among  ecosystem  services  is  crucial  for  the  design  of  land  use
strategies  that  optimize  ecosystem  service  delivery.  Correlation  coefficients,  obtained  through  pairwise
comparison  of  ecosystem  service  provision  maps,  have  been  put  forward  as suitable  indicators  to  quantify
these  interactions.  However,  for  more  in  depth  analyses  of  trade-offs  and synergies  where  driving forces
of interactions  need  to be  determined,  more  sophisticated  methods  are  needed.  Although  Bayesian  belief
networks  have  been  frequently  mentioned  as  promising  tools  to  investigate  interactions  among  ecosys-
tem  services,  up till  now,  no structured  approaches  to do so  have  been  suggested.  This  paper  presents
a  way  to analyse  trade-offs  and  synergies  among  ecosystem  services  together  with  their driving  forces.
Joint probability  distributions  of ecosystem  service  pairs,  which  can  be  calculated  by using  Bayesian  belief
network  models,  are  used  to quantify  interactions.  The  paper demonstrates  the  approach  by quantifying
trade-offs  and  synergies  among  several  ecosystem  services  in  Flanders,  Belgium.  Our  analysis  identifies
two  bundles  of  ecosystem  services  which  react  synergistically.  Wood  production  and  several  regulat-
ing  services  on  the  one  hand  and food  production  and  soil  formation  on  the other  hand.  Trade-offs  are
identified  among  food  production  and  most  of the  other  services  that  were  included  into  the  analysis.
In  addition  to these  general  findings,  the  analysis  shows  that  the  identified  interactions  may  change
depending  on the  considered  environmental  conditions,  specified  through  soil type,  land  cover  and  land
use.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Nature supplies a broad range of products and services that sup-
port human well-being (Daily, 1997). Typical examples of these
ecosystem services (ES) include food production on agricultural
land, wood production in forests and flood risk reduction by wet-
lands. Accounting for ES supply is increasingly becoming common
practice in spatial planning studies (Hansen et al., 2015; Wilkinson
et al., 2013). To evaluate alternative land use allocation scenar-
ios, optimising ES delivery is being considered as an important
objective (e.g. Broekx et al., 2013; Koschke et al., 2012). Attain-
ing this objective, however, is far from straightforward. Natural
and semi-natural ecosystems provide a broad range of goods (e.g.
wood production, food production) and services (e.g. water quality
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regulation, climate regulation, recreation) of which the supply pro-
cesses are closely related (Vangansbeke et al., 2016; Landuyt et al.,
2014; Butler et al., 2013). Optimising the supply of one ES might
diminish the supply of another (see Lee and Lautenbach (2016) for
an exhaustive review of studied ES interactions). A phenomenon
that is referred to as a trade-off, commonly defined as “when the
provision of one ES is reduced as a consequence of increased use
of another ES” (Rodríguez et al., 2006). While explicit consider-
ation of trade-offs during decision-making is preferable, limited
knowledge on trade-offs often leads to unintended side effects of
management decisions in practice (Dugan et al., 2010; Allan et al.,
2015; Rodríguez et al., 2006). Being able to identify and quantify
trade-offs is one of the challenges that the ES research community
are facing (Kremen, 2005).

Current efforts to quantify trade-offs can be classified into
empirical (e.g. Cavender-Bares et al., 2015; Oñatibia et al., 2015)
and model-based approaches (e.g. Maes et al., 2012; Haase et al.,
2012). While empirical approaches are suitable to quantify trade-
offs locally, limited data availability impedes the use of these
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data-driven approaches at the regional scale. At the regional scale,
trade-offs are generally assessed by comparing predicted instead
of measured ES delivery rates. When grid-based spatial models
are used, pixel-based comparison of ES delivery maps can reveal
trade-offs or synergies. Scatter plots (e.g. Yang et al., 2015; Haase
et al., 2012) and bag plots (Jopke et al., 2015) have been used to
visualise these interactions. A frequently used indicator to analyse
and quantify trade-offs and synergies is the Pearson’s correlation
coefficient (e.g. Chan et al., 2006; Raudsepp-Hearne et al., 2010;
Yang et al., 2015), which is often corrected for spatial autocorre-
lation (e.g. through applying the CRH-test (Maes et al., 2012) or
through data subsampling (Turner et al., 2014)). Correlation coef-
ficients range between −1 and 1 and can characterise trade-offs
and synergies through negative and positive values, respectively.
The more the correlation coefficient differs from zero (indicating
statistical independence), the stronger the interaction.

However, following the definition of Rodríguez et al. (2006),
stating that trade-offs are always induced through ES use, correla-
tion coefficients do not always indicate such interactions. A positive
correlation coefficients can, for example, be the result of a spa-
tial association of services that is not caused through management
(or use). Turner et al. (2014) refer to these correlations as being
coincidental and present such a coincidental correlation between
soil organic carbon storage and the provision of cultural services in
Denmark. In this case, management actions oriented at optimising
the supply of one service will not necessarily lead to an increased
supply of the other service, hence a synergy that is less relevant for
decision making. Although most authors refer to these interactions
as conventional trade-offs and synergies, we prefer to make a dis-
tinction here because of their lower relevance for decision making
and label them spatial associations instead. In this context, corre-
lation coefficient might act as complexity blinders. More dynamic
approaches that assess interactions among changes in ES delivery
rates (e.g. Haase et al., 2012; Lauf et al., 2014) instead of inter-
actions among static delivery rates (e.g. Maes et al., 2012; Turner
et al., 2014) are able to differentiate between both trade-off types. A
downside of this approach is that it requires extra modelling efforts
as successive time steps (Haase et al., 2012) or alternative futures
(Lauf et al., 2014) need to modelled. On top of the complexity argu-
ment provided above, the validity of correlation coefficients that
are based on proxies for ES provision instead of measured data
can be questioned as well. As proxies for ES provision are gener-
ally uncertain (Hou et al., 2013) and may  deviate from measured
data (Eigenbrod et al., 2010), correlation coefficients among them
will be uncertain as well, an issue that is frequently ignored in the
literature.

To fully account for the complexity of trade-offs and to be able to
detect trade-offs that are relevant for decision makers, less black-
box approaches are needed. Approaches that deliver additional
information on why and how synergies and trade-offs appear. This
can be achieved by applying models that explicitly account for
causal relations within and in between delivery processes of multi-
ple ES. At the same time, these approaches should be able to identify
relationships even in case delivery rates can only be modelled or
measured with a limited amount of confidence. Bayesian belief
network (BBN) models are graphical, probabilistic models that are
able to do so. They are increasingly being used in the ES modelling
domain due to their capacity to integrate expert knowledge in the
modelling process and their ability to account for uncertainties
(Landuyt et al., 2013). Also to identify trade-offs, BBN modelling
has been successfully applied (Van der Biest et al., 2014).

In this paper, we investigate the potential of BBNs to identify
and quantify trade-offs among the supply of six ES in Flanders,
Belgium. By doing so, we propose joint probability distributions
(JPDs) and conditional joint probability distributions (conditional
JPDs) as a new approach to calculate correlation coefficients and

Fig. 1. Example Bayesian belief network model with four variables A–D.

as a new visual indicator to characterise ES interactions. Using
this approach, we  investigate whether trade-offs among provision-
ing services and other ES, as found by Howe et al. (2014), can
be detected in Flanders as well and analyse whether trade-offs
and synergies can change depending on the environmental context
(Charpentier, 2015; Castro et al., 2014).

2. Methods

2.1. Bayesian belief network modelling

2.1.1. Theoretical background
BBNs are graphical probabilistic models that encode the system

being modelled as a network of nodes, representing the system’s
variables, connected through arrows, representing causal relations
among the system’s variables. This network of nodes is generally
referred to as a directed acyclic graph or DAG, referring to the
directed nature of the arrows and the absence of cycles or feedback
loops within the graph. As all variables in a BBN are discrete or dis-
cretised continuous variables, the causal relation between a parent
node X (at the origin of an arrow) and a child node Y (at the end of an
arrow) can be quantified through a discrete conditional probabil-
ity distribution P(Y|x) for each discrete state x of parent node X. All
these distributions are stored in the conditional probability table
or CPT of child node Y. Note that for parentless variables, the input
nodes of the model, P(X|parents(X)) simplifies to P(X). By multiply-
ing all conditional probability distributions (P(X|parents(X)), the JPD
over the system’s variables is obtained (Eq. (1)). This JPD allows a
BBN to efficiently calculate the probability distribution of a vari-
able given information on other variables within the model. In the
context of ES, the model can, for example, predict the probability
distribution over the states of the variable that represent ES supply
given information on soil type, land use, etc.

P (X1, X2, . . .,  Xn) =
n∏

i=1

P(Xi|parents (Xi) ) (1)

Eq. (1) is a simplified representation of the generally applicable
chain rule of probability theory to calculate the JPD over a set of
variables. Eq. (2) shows how the chain rule of probability theory
simplifies to Eq. (1) by assuming a couple of independencies that
are encoded in the graph represented in Fig. 1. Concerning model
development, this implies that less conditional probabilities (two
instead of three in this example) need to be defined by the modeller
to calculate the JPD and, thus, to operationalise the model. For more
detailed information on the theoretical background of BBNs, we
refer to Jensen and Nielsen (2007).

P (A, B, C, D)
Chain rule of probability theory

= P (A) ∗ P (B|A) ∗ P (C|A, B) ∗ P(D|A, B, C)

Accounting for independencies encoded in the graph (Fig. 1)

= P (A) ∗ P (B) ∗ P (C|A, B) ∗ P (D|C)

(2)
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