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a  b  s  t  r  a  c  t

This research  establishes  a  residential  indirect  carbon  emissions  model  through  input–output  structure
decomposition  analysis  (IO-SDA)  and  LMDI,  analyses  the  influencing  factors  affecting  urban  and  rural
residential  carbon  emissions  indicators  in  Beijing  through  input–output  tables  from  2000  to  2010,  and
calculates  the  direct  carbon  emissions  from  residential  consumption.  As the  results  suggest,  the  total
carbon  emissions  from  residential  consumption  in Beijing  showed  volatility.  Growing  rural  and  urban
differences  in direct  emissions,  and  for  indirect  emissions,  mean  that  urban  greatly  exceeds  rural  in this
regard. Rising  per  capita  GDP  and  population,  as  well as  intermediate  demand  and  sectoral  emissions
intensity  change  induce  growth  in indirect  emissions  in both  urban  and  rural  settings:  of which,  per
capita  GDP  contributes  the most.  Declining  energy  intensity  contributes  the  most  to  emission  reduc-
tions,  followed  by residential  consumption  rates, the rural  to  urban  consumption  ratio  and  consumption
structure  effects  are  much  smaller.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

China has become the largest CO2 emitter in the world (IEA,
2010; Guan et al., 2012), and also one of the countries with the
greatest energy consumption (Liu et al., 2009): more than 85% of
China’s CO2 emissions come from the combustion of fossil fuel
(Guan et al., 2012). The residential energy consumption (REC) in
China has grown constantly since 2000, and reached 396.66 Mt
standard coal equivalent (SCE) by 2012, with a growth rate of
131.13%: demand is growing faster than in the industrial sectors.
Meanwhile, the annual growth rate of carbon emissions caused
by residential consumption was 8.7% (Fan et al., 2013), the abso-
lute share of total national emissions reached 10.3% in 2012 (Fan
et al., 2015), although far below the world average of 31% (Swan
and Ugursal, 2009), it remains the second largest source of emis-
sions in China, second only to industry, and as the proportion of
a gradual upward trend, its effects on environment and economy
will continue to strengthen. Therefore, it is particularly impor-
tant to examine the effects of residential consumption on carbon
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emissions, and provide evidence for energy conservation and
emission reduction policies developing from the perspective of
consumers.

The concept of carbon emissions from residential consump-
tion comes from the household energy requirement (Zhu et al.,
2012). The household energy requirement refers to that energy con-
sumption during day-to-day life, and can be categorised into direct
consumption and indirect consumption. Direct consumption is the
energy consumption used to meet energy needs in the daily life of
residents, while indirect consumption refers to energy consump-
tion indirectly consumed in the different phases of the lifecycle of
goods and services, such as in their production, transportation, and
marketing (Park and Heo, 2007; Reinders et al., 2003; Yuan et al.,
2015). Similarly, the emissions caused by residential consumption
include direct emissions and indirect emissions.

The mainstream methods studied for indirect carbon emissions
from residential consumption are input–output analysis (IOA) (Das
and Paul, 2014; Fan et al., 2012; Kok et al., 2006), and the consumer
lifestyle approach (CLA) (Bin and Dowlatabadi, 2005; Feng et al.,
2011; Wang and Yang, 2014; Wei  et al., 2007), while the method
used to estimate direct carbon emissions is relatively simple and
will be shown in Section 2. Kok et al. (2006) used three kinds of
input–output method to calculate residential energy consumption
and associated carbon emissions in the Netherlands, and noted that
the use of different data sources and merging levels measured can
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lead to different results. Wei  et al. (2007) used the CLA to analyse the
energy requirement and carbon emissions for rural and urban resi-
dents in China, and pointed out that about 26% of domestic energy
consumption and 30% of CO2 emissions arose from the lifestyles
of the residents and their related economic activities. Feng et al.
(2014) focused on the spatial distribution of production activities
leading to CO2 emissions and accounted consumption-based CO2
in China’s four municipalities through multiregional input–output
(MRIO) analysis and China’s Interregional Input–Output Tables
between 30 provinces in 2007, and noted that urban consumption
causes large emissions within its territory and impose much more
to surrounding provinces, also urban infrastructure and interre-
gional transportation network development drive CO2 emissions.
Structural decomposition analysis (SDA) is usually considered one
of the most effective and widely applied analytical tools that has
been used in tackling topics related to energy and environment in
IO framework (Diakoulaki et al., 2006). Su and Ang (2012b) had
reviewed the SDA applied to energy and emissions with method-
ological developments comprehensively and systematically. Minx
et al. (2011) investigated China’s carbon emissions from 1992 to
2007 using the environmental input–output model and structural
decomposition analysis (EIO-SDA): the results showed that over
70% of carbon emissions growth were from 2002 to 2007 (match-
ing the result computed by Guan et al. (2009)), and mainly came
from capital investment (47%) and export (33%), but not residen-
tial consumption (16%), or governmental consumption (3%). Peters
et al. (2007) simulated the impacts of changes in China’s economic
structure, urbanisation, and residents’ lifestyle on carbon emissions
through an input–output structural decomposition model analysis,
and found that, in the process of carbon emissions growth, urban-
isation and lifestyle change drove infrastructure construction and
the ensuing consumption of urban residents exceeded the rate of
change in energy efficiency improvements. Zhu et al. (2012) calcu-
lated residential consumption indirect carbon emissions in China
with China’s 1992–2005 comparable price input–output tables and
IO-SDA, and the results showed that rising consumption and declin-
ing energy intensity are the most important factors in increasing
and decreasing the emissions respectively, while the positive effect
of intermediate demand, consumption structure, and population
size for emissions growth were much smaller. Zhang et al. (2015)
analysed the energy consumption and related air pollution sit-
uation and its driving forces in Beijing from 1997 to 2010 by
input–output structural decomposition methods from bottom-up
and top-down approaches, and noted that the effects of popula-
tion growth on energy consumption and air pollution were the
significant. Wang et al. (2013b) analysed the driving forces for the
increment in CO2 emissions in Beijing from both production and
final demand perspectives during 1997–2010 based on IO-SDA,
and pointed out that production structure change and population
growth were two main drivers in emissions growth while emis-
sion intensity and per capita final demand volume reduction were
the two main offset forces. Tian et al. (2013) quantify the contrib-
utions of technology and socio-economic factors to rapid growth of
CO2 emissions in Beijing during 1995–2007 through IO-SDA, and
showed that increasing final demand level and production struc-
ture change carbonised Beijing significantly, while energy intensity
reduction was the sole prominent decarbonizing factor. Xia et al.
(2015) simulated urban metabolism processes by input–output
model and clarified the underlying reasons behind GHG emis-
sions growth in Beijing by structural decomposition analysis, from
the decomposed eight factors, final demand is the main source
for the growth of the energy-related emission for most sectors.
The general decomposition framework of SDA has been applied in
additive decomposition scheme, it also can be developed in mul-
tiplicative forms, which has been done by Su and Ang (2014) on
attribution analysis based on the generalized Fisher index, and Su

and Ang (2015) on decomposing aggregate carbon intensity based
on four different combinations of I-O models (Leontief vs. Ghosh
model) and imports assumptions (competitive vs. non-competitive
imports assumption).

In this research, we used an input–output analysis that could
reflect the sources of the inputs to, and the utilisation of the out-
puts from, production by various sectors of the economy with
the additive decomposition, which is the more commonly used
form in the SDA literature. By calculating the matrix related to the
input–output tables, we reflected the impact of changes in indus-
trial production, and socio-economic factors, on other industries
or consumers (Yuan et al., 2015; Zhu et al., 2012), and can fully
explain the energy consumption and the emission of pollutants
underlying the consumption of products and services. However,
as the living standard improved and consumption level ascended,
emissions from residential consumption significantly increased
and accounted for a growing share in the total emissions, little pub-
lished literature uses IO-SDA approach to study emissions resulting
from residential consumption on a city scale since IO-SDA approach
requires time-series input–output tables and sectoral energy data,
which are always unavailable for cities, so that provides space for
our research.

Beijing, as the capital of China and her second largest city,
represents rapid urbanisation, economic growth, and scientific
and technological progress. Studies of the characteristics and fea-
tures of carbon emissions from residential consumption in Beijing,
and analysis of influencing factors of carbon emissions indica-
tors in Beijing, is possible with some representativeness for some
metropolises in China or around the world, and could direct policy
decisions on industrial restricting and GHG mitigation (Wang et al.,
2013b). Also it can help to enhance the pertinence and operability of
energy conservation and emission reduction policies while devel-
oping a better guide for residents as to low carbon consumption
and sustainable consumption, and as a reference for other regions
or provinces, especially in some large cities where drive the regional
economy development in China, drive China towards becoming a
low-carbon economy as fast as possible.

There is a technique problem with the simple IO-SDA model: the
non-uniqueness of the decomposition results (Guan et al., 2008;
Liang et al., 2013; Peters et al., 2007; Rørmose and Olsen, 2005;
Wang et al., 2013b), if the number of decomposed factors is n, the
number of possible decomposition forms is n! (Dietzenbacher and
Los, 1998). Dietzenbacher and Los proposed using the average of all
n! decomposition forms to reach the results. But when the number
of decomposed factors is large, this method will increase the com-
putational complexity and workload (this method is referred to as
D&L in short). Some “shortcut” techniques like polar decomposi-
tion, midpoint weighted decomposition, or the weighted average
decomposition method have been used to calculate the impacts
of variations in decomposed factors on the dependent variables.
These approaches reduce the computational complexity at the cost
of result accuracy: all the interactive items cannot be completely
decomposed, and the obtained results are approximate (Su and
Ang, 2012b; Wang et al., 2012). The Logarithmic Mean Divisia Index
(LMDI) approach is a complete, and no-residual, decomposition
method, and could well overcome the problem of interactive items
(Ang et al., 1998), and this approach has also been accorded a wide
range of application (Liu et al., 2007; Nie and Kemp, 2014; Wang
et al., 2011; Xu et al., 2012, 2014; Zha et al., 2010; Zhao et al.,
2010). As reviewed in Su and Ang (2012b), the decomposed meth-
ods used in SDA in literatures can be divided into four categories,
i.e. ad hoc, D&L (full D&L or an approximate technique), LMDI and
Others (including the mean rate of change of MRCI and the para-
metric Divisia methods), while D&L and LMDI are recommended in
empirical studies. The application of LMDI in SDA has been confined
to the one-stage model (treat changes in the Leontief matrix as a
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