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a  b  s  t  r  a  c  t

Satellite-based  techniques  that  provide  temporally  and  spatially  continuous  information  over  vegetated
surfaces  have  become  increasingly  important  in monitoring  the  global  agriculture  yield.  In  this  study,
we  examine  the  performance  of  a light  use  efficiency  model  (EC-LUE)  for simulating  the  gross  primary
production  (GPP)  and  yield  of  crops.  The  EC-LUE  model  can  explain  on  average  approximately  90%  of the
variability  in  GPP  for 36  FLUXNET  sites  globally.  The  results  indicate  that a universal  set  of parameters,
independent  of crop  species  (except  for  C4  crops),  can  be  adopted  in the EC-LUE  model  for  simulating
crops’  GPP.  At  both  irrigated  and  rainfed  sites,  the  EC-LUE  model  exhibits  a similar  level  of  performance.
However,  large  errors  are  found  when  simulating  yield  based  on  crop  harvest  index.  This  analysis  high-
lights  the  need  to improve  the representation  of  the  harvest  index  and  carbon  allocation  for  improving
crop  yield  estimations  from  satellite-based  methods.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Approximately 12% of the Earth’s land surface is presently rep-
resented by cultivated cropland, which supplies the great part
of human food production. Sustained world population growth,
rising meat and dairy consumption and expanding biofuel use
are exerting increasing pressure on global agriculture (Ray et al.,
2012). Global food production, however, is and will be significantly
affected by climate change (Parry et al., 2004; Schmidhuber and
Tubiello, 2007). In this perspective, crop production monitoring
and forecasting is of fundamental importance for agricultural man-
agement, food security threats, food trade policy and carbon cycle
research (Tilman et al., 2011).

Remotely sensed data provide temporally and spatially continu-
ous information over vegetated surfaces and is useful for accurately
monitoring cropland yield and spatial patterns. Generally, there
are two approaches for yield estimation using remote sensing data.
The first method includes biophysical crop-simulation models that
retrieve crop growth parameters from remotely sensed data, which
are used as inputs to calibrate and drive the models (Brisson et al.,
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1998). The main drawback of such models is that they typically
require numerous crop-specific inputs such as soil characteris-
tics, management practices, agro-meteorological data and planting
dates to simulate crop growth and development through the crop
cycle (Moriondo et al., 2007). Such crop-simulation models include
CERES (Ritchie and Otter, 1985), WOFOST (Van Depen et al., 1989)
and CROPSYST (Van Evert and Campbell, 1994). The second scheme
includes statistical regression-based methods, which are the most
commonly used remote sensing-based approaches (Wall et al.,
2008). These are based on empirical relationships between historic
yields and reflectance-based vegetation indices. They are typically
straightforward to implement and do not require numerous inputs.
A main drawback of empirically based approaches is that the rela-
tionships between yield and reflectance are typically localized and
are not easily extendable to other areas (Doraiswamy et al., 2003;
Moriondo et al., 2007).

Satellite-based light use efficiency (LUE) models are an alter-
native approach that makes it possible to accurately estimate crop
yield, because they can successfully estimate the vegetation’s gross
primary production (GPP), which is at the basis of the ecosystem’s
carbon biogeochemical cycle and the main variable determin-
ing crop yield. The LUE models build upon the assumption that
ecosystem GPP is directly related to the absorbed Photosyntheti-
cally Active Radiation (APAR) through LUE (Monteith, 1972, 1977).
Actual LUE may be reduced below its theoretical potential value by
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environmental stresses such as low temperatures or water short-
ages (Landsberg, 1986; Goerner et al., 2009). Some studies have
evaluated LUE models at regional and global scales in major ecosys-
tem types (Potter et al., 1993; Turner et al., 2006; Huntzinger et al.,
2012; Yuan et al., 2012; Raczka et al., 2013; Cai et al., 2014).

In recent years, several studies have used the LUE models to
address the spatial and temporal patterns of cropland vegetation
production (Chen et al., 2014) and to simulate crop yield over large
areas (Xin et al., 2013). On the other hand, some authors examined
the capability of LUE models to estimate crop yield and demon-
strated large uncertainties. For example, based on the MODIS-GPP
products (MOD17), Reeves et al. (2005) found a weak correlation
between GPP estimates and the national agricultural yield data at
the county level for the states of Montana and North Dakota in the
United States, and highlighted the need to use crop-specific model
parameters. Moreover, the model performance for simulating crop
yield has never been evaluated at the site scale. Previous studies
often examined model performance over large regions by compar-
ing outputs with regional crop inventory data (Xin et al., 2013; Li
et al., 2014). The uncertainties from model inputs, which are needed
for regional estimates, will hinder the judgment of model perfor-
mance. Li et al. (2014) found the misclassification of cropland from
a land cover product is one of the major causes of bias in the NPP
estimates of cropland in the midwestern United States.

This study aims to examine the performance of a LUE model (i.e.,
EC-LUE, Yuan et al., 2007) for the prediction of crop biomass and
yield production, over multiple crop species globally. The overar-
ching goals of this study are to (1) examine the model performance
for vegetative primary production across various crop types and
management, (2) assess the possibility for simulating crop yield
from crop vegetation production estimates, and (3) investigate the
most relevant processes for crop yield simulations based on the LUE
models.

2. Model and data

2.1. EC-LUE model

Yuan et al. (2007, 2010) developed the Eddy Covariance-Light
Use Efficiency (EC-LUE) model to simulate daily vegetation GPP.
The EC-LUE model is driven by only four variables: the Normal-
ized Difference Vegetation Index (NDVI), Photosynthetically Active
Radiation (PAR), air temperature (T), and the Bowen ratio of sensi-
ble to latent heat flux. The EC-LUE model has the great advantage to
map daily GPP over large areas because the potential LUE is invari-
ant across various land cover types (Yuan et al., 2014b). Previous
study indicated that a universal of set of parameters, which is inde-
pendent of vegetation cover type and characteristics can be adopted
in EC-LUE model (Yuan et al., 2014b). Availability of this well tested
and universal set of parameters would help to improve the accuracy
and applicability of LUE models in various biomes and geographic
regions.

The model equations are as follows:

GPP = PAR × fPAR × εmax × Min(Ts, WSEF ) (1)

fPAR = 1.24 × NDVI − 0.168 (2)

Ts = (T − Tmin) × (T − Tmax)

(T − Tmin) × (T − Tmax) − (T − Topt)
2

(3)

WSEF = LE
Rn

(4)

where fPAR is the fraction of intercepted incident PAR. εmax is the
potential light use efficiency without environmental stress (2.14 g
C m−2 MJ−1 APAR). Min  denotes the minimum values of Ts and WSEF
(it is assumed that the impacts of temperature and moisture follow

Liebig’s Law, so that LUE is only affected by the most limiting factor
at any given time). Tmin, Tmax and Topt are the minimum, maximum
and optimum air temperatures (◦C) for photosynthetic activity,
respectively. If the air temperature falls below Tmin or increases
beyond Tmax, Ts is set to zero. In this study, Tmin and Tmax were set
to 0 and 40 ◦C (Yuan et al., 2007), respectively, while Topt was  deter-
mined using nonlinear optimization to be 21 ◦C (Yuan et al., 2007).
LE is the daily latent heat flux (MJ  m−2), which is estimated using
the revised RS-PM (Remote Sensing – Penman Monteith) model
(Yuan et al., 2010). Rn is the daily net radiation (MJ  m−2).

2.2. Data

Data collected at 36 eddy covariance (EC) sites (78 site-year)
were used in this study to examine the performance of the
EC-LUE model (Table 1). These sites covered several dominant crop-
land ecosystem types (Table 1). EC data were obtained from the
websites: FLUXNET (http://www.fluxdata.org), HiWATER (http://
westdc.westgis.ac.cn/hiwater) (Li et al., 2013), and AsiaFlux (http://
www.asiaflux.net). Supplementary information on the vegetation,
climate and soil at each site was also available at the above web
sites. Half-hourly or hourly averaged PAR, T and friction velocity
(u*) were used along with Net ecosystem CO2 exchange (NEE) in
this study. FLUXNET datasets that were gap-filled by site investi-
gators were used directly for this study (i.e., the LaThuile database)
(Agarwal et al., 2010).

For the sites that were not in the LaThuile FLUXNET database,
the following established procedures were used to fill data gaps
(Yuan et al., 2014a): nonlinear regression relationships were fit-
ted between the measured fluxes and controlling environmental
variables (air temperature, PAR) and subsequently used to fill the
missing values using a 15-day moving window. The van’t Hoff equa-
tion was used to estimate missing night time NEE (Fc,night) (Lloyd
and Taylor, 1994):

Fc,night = A × e(B×T) (5)

where A and B are estimated model coefficients and T is the air tem-
perature. A Michaelis–Menten light response equation was  used for
daytime NEE (Fc,day) (Falge et al., 2001):

Fc,day = ˛ × PAR × FGPP,sat

FGPP,sat +  ̨ × PAR
− FRE,day (6)

where FGPP,sat (the GPP at saturating light) and  ̨ (the initial slope of
the light response function) are empirically estimated coefficients,
and FRE,day (ecosystem respiration) was  estimated by the extrap-
olation of Eq. (5) using the daytime air temperature. The daily
NEE, ecosystem respiration (Re), and meteorological variables were
averaged based on half-hourly or hourly values, and the daily val-
ues were flagged as missing when more than 20% of the data for a
given day was  lacking; otherwise, the daily values were calculated
by multiplying the averaged half-hourly or hourly rate by 24 h. The
GPP was  calculated as the sum of the NEE and Re. Based on the daily
dataset, the 8-day GPP mean value could be calculated. If more than
2 days of daily data were missing within a given 8-day period, the
8-day value was indicated as missing.

We adapted the harvest index methods (Prince et al., 2001) to
estimate crop yield using the following equations:

Yield = GPP × AR × HI × RS (7)

where Yield is the crop yield (g C m−2 yr−1). AR is the autotrophic
respiration proportion accounting for GPP (0.53) (Waring et al.,
1998), and GPP × AR indicates the net primary production (NPP)
(g C m−2 yr−1). HI refers to the harvest index, a standard measure
of the proportion of total crop aboveground biomass allocated to
the economic yield of the plant (Donald and Hamblin, 1976; Hay,
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