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a  b  s  t  r  a  c  t

Increased  awareness  about  the  uncertainty  of  ecological  water  quality  (EWQ)  assessment  tools  in river
management  has  led  to  the  identification  of  the  underlying  uncertainty  sources  and  the  quantification  of
their effect  on  assessment.  More  specifically,  with  respect  to macroinvertebrate-based  EWQ  assessment,
use  of  erroneous  abundance  data  has  been  identified  as a (possible)  source  of  uncertainty.  In  this  paper,
the  effect  of  erroneous  abundance  data  on the  uncertainty  of  an EWQ  assessment  index  was  investigated.
A  model  simulation  based  method,  the  virtual  ecologist  approach,  was  used  to estimate  the  impact  of
abundance  data  errors  on the uncertainty  of  the  Multimetric  Macroinvertebrate  Index  Flanders  (MMIF).
The  results  of  this  study  show  that  the  effects  of relative  small  errors on the  MMIF  and  assessment  are
limited.  Additionally,  it is  observed  that  uncertainties  due  to abundance  errors  increase  with  decreasing
EWQ  (i.e.  lower  MMIF).  This is  important,  since  decision-makers  typically  formulate  management  actions
for rivers  with  a low  EWQ.  In  short,  the  innovative  virtual  ecologist  approach  proved  to  be very  successful
to research  the  index  uncertainty  and  present  a unique  insight  in the  functioning  of  the  assessment  index.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Ecological water quality (EWQ) assessment of freshwater
ecosystems is subject to uncertainty and errors. Decision-makers
are increasingly aware of the importance of including uncertainty
in the assessment of the aquatic environment (Uusitalo et al., 2015).
Consequently, it is a matter of concern that the sources of the uncer-
tainty in the assessment are identified and effects are quantified
(Clarke et al., 2002). For instance, macroinvertebrate-based EWQ
assessment is often based on presence-absence and abundance
data to calculate a multimetric index (Hering et al., 2003, 2004). As
such, errors in these data will influence the precision of the mul-
timetric index calculation, EWQ  assessment and decisions in river
management.

Clarke and Hering (2006) state that variations in macroinverte-
brate field data are due to sampling variations, sampling method,
natural temporal variation (i.e. variations caused by reasons other
than stress or pollution), sample processing and errors in taxo-
nomic identification. Several studies have researched the effect of
these variations and errors on EWQ  assessment (Clarke et al., 2002,
2006; Haase et al., 2006; Lorenz and Clarke, 2006; Šporka et al.,
2006; Vlek et al., 2006; Johnson et al., 2012). Sampling variations
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are observed variations within one site, caused by a spatial het-
erogeneity in microhabitats and distribution of macroinvertebrate
species in these habitats. Lorenz and Clarke (2006) introduced the
term “sample coherence” with the aim to assess within site vari-
ability. They concluded that sample coherence, expressed in several
similarity indices, between replicates in one site is high.

Clearly, the precision of the used sampling method will be influ-
enced by the range of habitats (i.e. area) which are sampled and the
number of sampling units (Barbour et al., 2003). With respect to
number of sampling units, Vlek et al. (2006) investigated the effect
of sample size (i.e. physical size, expressed as the length over which
the river is sampled) on metric uncertainty by comparing the vari-
ance of several metrics for an increased sample size. As expected,
the precision (uncertainty) of all metrics increased (decreased) as
the sample size increased. The sample size needed to gain a certain
degree of precision was, however, different for every metric.

Furthermore, with respect to natural variations, a high “sea-
sonal coherence” was observed, indicating that samples taken in
the same season show higher similarity than samples taken in dif-
ferent seasons (Lorenz and Clarke, 2006). This was confirmed by
Šporka et al. (2006) and Johnson et al. (2012), who observed an
effect of seasonality on the samples and calculated metrics. In a
final example, Clarke et al. (2006) researched the uncertainty due
to sample processing by quantifying the effect of sub-sampling on
a number of metrics. Sub-sampling is carried out by selecting a
representative part of the sample and is required according to the
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STAR-AQEM method (Clarke and Hering, 2006). Clarke et al. (2006)
took replicates of sub-samples to assess the effect of this procedure
on the metric uncertainty. They concluded that sub-sampling of the
field sample can cause variations in several metrics up to 50%.

Apart from sampling variations and method, temporal varia-
tions and sample processing, errors in the taxonomic identification
are a source of uncertainty in EWQ  assessment (Clarke and Hering,
2006). The taxonomic identification covers the identification of
species and the abundance of each unique species. The latter data
are often used to calculate metrics which account for community
evenness and/or diversity (for example, the Shannon Wiener Diver-
sity index). As indicated by Haase et al. (2006) and Jones (2008),
the errors in species identification will influence the assessment
results. Additionally, the variations and errors in the identification
of species abundance could also have an impact on the uncertainty
of the EWQ  assessment. However, to the authors’ knowledge, this
impact has yet to be quantified.

In this research, we investigated the impact of errors in species
abundance data on a multimetric index and the coupled EWQ
assessment. To do so, we used the virtual ecologist approach of
Zurell et al. (2010) which has received increasing attention to assess
the quality of sampling protocols, data collection and model eval-
uation. In a virtual experiment, data are simulated by an observer
model and used as input for a simulation model, which, in our case,
is the multimetric index. We  used an observer model to simulate
errors on abundance data and researched the effect of these errors
on the multimetric index. The paper is structured as follows: in Sec-
tion 2, we present the set-up of the virtual experiment, the used
data and multimetric index. In Section 3, we present the results
of the experiment. Finally, in Section 4, we discuss and summarise
the findings of the experiment and the implications for EWQ  assess-
ment.

2. Materials and methods

A schematic representation of the virtual experiment is pre-
sented in Fig. 1. In the top panel of the figure, the methodology
of a field experiment is shown. A sample of the river’s macroin-
vertebrate community is taken, the sample is processed and the
present taxa and abundance are identified. The taxa and abundance
data (Section 2.1) are used as input for the multimetric index (Sec-
tion 2.2), so that the EWQ  of the river can be assessed. In the lower
panel of Fig. 1, simulated data are generated with an observer model
and the original data (Section 2.3). In this experiment, the observer
model accounts for errors in the abundance data due to miscounts,
misidentification and erroneous estimates. The simulated data are
used to calculate the multimetric index and to assess the EWQ.
Monte Carlo (MC) simulations are used to estimate the uncertainty

Fig. 1. Illustration of the virtual experiment. In the top panel, the procedure of a typ-
ical field experiment is shown, in which data are collected by sampling the river’s
macroinvertebrate community. The data are used to calculate the multimetric index
and assess the EWQ  of the river. In the virtual experiment (lower panel), simulated
data are generated with an observer model. This model simulates data by perturb-
ing  the original dataset with an error rate (see also Section 2.3). Monte Carlo (MC)
simulations are used to estimate the uncertainty of the multimetric index. The MC
simulations are evaluated by comparing the simulations with the true metric values.

of the multimetric index (Section 2.4). In order to estimate the
effect of the abundance error on the assessment, the true metric
results are compared with the MC  simulations (Section 2.5).

2.1. Data

The dataset consists of samples of macroinvertebrates collected
by the Flemish Environment Agency (VMM). The macroinverte-
brate samples were collected by the VMM  over a period of 20 years.
Throughout this period, the VMM  has monitored the EWQ  at more
than 2500 locations in Flanders spread over different water bod-
ies (Boets et al., 2013). All data were collected using the sampling
methodology described by De Pauw and Vanhooren (1983) and
Gabriels et al. (2010). The macroinvertebrate community was sam-
pled using kick sampling with hand nets (De Pauw and Vanhooren,
1983) or artificial substrates (De Pauw et al., 1986, 1994). In the lab-
oratory, the macroinvertebrate species were picked and identified
based upon the determination key of De Pauw and Vannevel (1991)
and the reference taxa list of Gabriels et al. (2010). The abundance
of all present taxa was  counted or estimated in a tray. An estimate
of the abundance was  done when more than 10 instances of the
species were present. Typically, this was  done by dividing the tray
in a number of subsections and counting the species abundance in
one subsection of the tray. Finally, the count in this one subsec-
tion was multiplied by the number of equal subsections in the tray
(internal communication and VMM  (2014)). In this study, abun-
dance data between 2000 and 2012 of the VMM  data base were
used. The dataset comprises 7260 unique samples collected in 2682
sampling locations.

2.2. Multimetric index

The multimetric index used in this study was the Multimetric
Macroinvertebrate Index Flanders (MMIF) (Gabriels et al., 2010).
The MMIF  is a multimetric index that aggregates five metrics
accounting for evenness, species richness and sensitivity properties
of the macroinvertebrate community. The included metrics are the
taxa richness (TAX), the number of Ephemeroptera, Plecoptera and
Trichoptera (EPT), Number of other (i.e. non-EPT) Sensitive Taxa
(NST), the Shannon-Wiener Diversity (SWD) index and the Mean
Tolerance Score (MTS). A scoring system is appointed to each met-
ric based on defined reference values. These score values range
from zero to four with four being assigned to the metric values
nearest to the reference value. The five scores are summed and
subsequently divided by 20 to obtain a discrete value for the MMIF
between 0 and 1, representing an ecologically unfavourable and
favourable status of the water body, respectively. These values are
then classified in 5 classes – Bad, Poor, Moderate, Good and High
– based on quality class ranges which are defined for every type
of water body through an intercalibration exercise (Buffagni and
Furse, 2006; Gabriels et al., 2010). Since abundance data are only
used to calculate the SWD, we only analysed the SWD  metric and
its related score (SWDs), as well as the effect of this metric on the
numerical MMIF  value and MMIF  class (MMIFc).

2.3. Observer model

The observer model simulates data from the original abundance
data (Section 2.1). It is assumed that abundance errors increase with
increasing values of the abundance. The simulated data are gener-
ated from the original dataset by adding a multiplicative normal
distributed (N) error model:

A′ = A + A ∗ N(0,  �2) (1)
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