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a  b  s  t  r  a  c  t

Soil  organic  carbon  (SOC)  plays  an  important  role  in soil  fertility  and  carbon  sequestration,  and  a better
understanding  of the spatial  patterns  of  SOC  is  essential  for soil  resource  management.  In  this  study,
we  used  boosted  regression  tree  (BRT)  and  random  forest  (RF)  models  to map  the distribution  of topsoil
organic  carbon  content  at the  northeastern  edge  of the Tibetan  Plateau  in  China.  A set  of  105  soil  sam-
ples  and  12  environmental  variables  (including  topography,  climate  and  vegetation)  were  analyzed.  The
performance  of  the  models  was evaluated  using  a 10-fold  cross-validation  procedure.  Maps  of  the  mean
values and  standard  deviations  of  SOC  were  generated  to  illustrate  model  variability  and uncertainty.
The  results  indicate  that  the  BRT  and  RF models  exhibited  very  similar  performance  and  yielded  similar
predicted  distributions  of  SOC.  The  two models  explained  approximately  70%  of the  total  SOC  variability.
The  BRT  and  RF  models  robustly  predicted  the  SOC  at low  observed  SOC  values,  whereas  they underesti-
mated  high  observed  SOC values.  This  underestimation  may  have  been  caused  by biased  distributions  of
soil  samples  in  the SOC  space.  Vegetation-related  variables  were  assigned  the  highest  importance  in  both
models,  followed  by  climate  and  topography.  Both  models  produced  spatial  distribution  maps  of  SOC  that
were closely  related  to  vegetation  cover.  The  SOC  content  predicted  by the  BRT  model  was  clearly  higher
than  that of the  RF  model  in  areas  with  greater  vegetation  cover  because  the  contributions  of  vegetation-
related  variables  in  the  two  models  (65%  and  43%,  respectively)  differed  significantly.  The  predicted  SOC
content  increased  from  the  northwestern  to  the  southeastern  part  of  the  study  area,  average  values  pro-
duced by  the  BRT  and  RF models  were  27.3  g  kg−1 and  26.6  g  kg−1, respectively.  We conclude  that  the  BRT
and  RF  methods  should  be  calibrated  and compared  to obtain  the best  prediction  of SOC  spatial  distribu-
tion  in  similar  regions.  In addition,  vegetation  variables,  including  those  obtained  from  remote  sensing
imagery,  should  be taken  as the main  environmental  indicators  and  explicitly  included  when  generating
SOC  maps  in  Alpine  environments.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Soil is an important and the largest reservoir of organic carbon in
terrestrial ecosystems (Batjes, 1996). Soil stores more carbon than
the atmosphere and vegetation and thus plays an important role
in the global carbon cycle (Bohn, 1982; Schlesinger, 1997; Grace,
2004). An important function of the soil organic carbon (SOC) pool
is its role as a potential sink of greenhouse gases (Davidson and
Janssens, 2006; Gal et al., 2007). Minor changes in the amount of
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SOC could greatly affect atmospheric CO2 concentrations due to
its sensitivity to climate changes and human activities (Bellamy
et al., 2005). In addition, SOC is closely related to the soil quality,
fertility, biological processes, structure and hydraulic properties of
soil (Zhang et al., 2006). Therefore, a better understanding of SOC
content and its controls is necessary for soil resource management
and sustainable usage. Furthermore, accurate estimates of SOC are
quite essential for analyzing regional carbon cycling and potential
responses of soils to global environmental change.

It is difficult to sample and analyze a large number of points
and then map  the distribution of SOC across large areas, partic-
ularly in areas of rugged terrain such as Alpine environments.
Digital soil mapping (DSM) is an efficient method for predict-
ing soil properties and classes over large areas based on discrete
samples (McBratney et al., 2003). Most DSM methods were
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developed based on a soil-landscape model that characterizes soils
as a function of environmental variables including climate, biota,
relief, parent material and time (Jenny, 1941). Numerous tech-
niques have been used to SOC estimations, including multiple linear
regression (Arrouays et al., 1995), linear mixed models (Zhao et al.,
2014), artificial neural networks (Minasny et al., 2006), support vec-
tor machines (Were et al., 2015), kriging (Mishra et al., 2009), the
boosted regression tree (BRT) model (Martin et al., 2011) and the
random forest (RF) model (Grimm et al., 2008). Despite the various
applications of statistical techniques in SOC estimations, compar-
isons of various methods are still rarely reported in the literature
(i.e., Were et al., 2015).

Of these DSM techniques, tree models have been widely used to
map  the spatial distribution of SOC (Henderson et al., 2005; Grimm
et al., 2008; Martin et al., 2011). In general, appropriate single trees
are difficult to construct for several reasons, including incorrect
parameter settings, simplicity rules and tree instability, and such
issues have led to the development of bagging, boosting and ran-
dom methods to improve predictive performance (Skurichina and
Duin, 2002). In bagging, the models are fitted using random inde-
pendent bootstrap replicates and are then combined by averaging
the output for regression (Efron and Tibshirani, 1993). The BRT
and RF models are two relatively new tree-based models that have
been developed to optimize predictive performance by combin-
ing a large number of simple trees into a powerful model rather
than using a single tree model based on traditional regression trees
(Breiman, 2001; Skurichina and Duin, 2002; Friedman, 2001, 2002).
In the BRT model, the fitted model is a simple linear combination
of many trees that are fitted iteratively and boosted to reweight
poorly modeled observations (Elith et al., 2008). The RF model is
constructed in a random vector of the data feature space sam-
pled independently (Breiman, 2001). Being data mining methods,
the BRT and RF models have several common advantages, includ-
ing a limited number of user-defined parameters and the ability
to model non-linear relationships, manage qualitative and quanti-
tative variables, remain robust despite missing data and outliers,
reduce overfitting, and evaluate, summarize and interpret final
models (Breiman, 2001; Friedman and Meulman, 2003).

Owing to these merits, BRT and RF models have been widely
applied in various scientific fields, including ecological model-
ing (Peters et al., 2008; T. Froeschke and F. Froeschke, 2011),
remote sensing (Lawrence et al., 2004, 2006; Pouteau et al., 2011),
environmental science (Carslaw and Taylor, 2009), epidemiology
(Friedman and Meulman, 2003) and digital soil carbon mapping
(Grimm et al., 2008; Martin et al., 2011; Wiesmeier et al., 2011;
Sreenivas et al., 2014; Wiesmeier et al., 2014). However, a com-
parison of the performance of BRT and RF models has not yet been
attempted in recent SOC mapping studies.

Therefore, we evaluated the performance of and differences
between the BRT and RF models in mapping the variability of
organic carbon content in the topsoil (0–20 cm)  at the northeast
edge of the Tibetan Plateau in China. The specific objectives were
to (1) develop BRT and RF models to predict the SOC content based
on 105 soil samples and 12 environmental variables, (2) quantify
the effects of various environmental variables on the SOC varia-
tion, and (3) map  the spatial distribution of SOC by comparing the
predictive qualities of the BRT and RF models.

2. Materials and methods

2.1. Study area

The study area measures approximately 30,000 km2 and is
located in northwestern China, specifically on the northeast-
ern edge of the Tibetan Plateau (latitude 37.71◦–40.03◦ North,

longitude 96.78◦–101.2◦ East) (Fig. 1). This region is dominated
by the Qilian Mountains, which range in elevation from 1684 to
4600 m above sea level. The study area has a typical plateau conti-
nental climate, and the mean annual temperature (MAT) and mean
annual precipitation (MAP) range from −12.3 to 6.6 ◦C and 72 to
480 mm,  respectively. The vegetation consists of alpine grasslands.
Grassland types, in order of descending elevation, vary as follows:
cold desert alpine meadow, sub-alpine shrub grassland, mountain
forest grassland, dry shrub grassland and desert grassland (Jin et al.,
2009). The study area has a long history of land use as pasture. Due
to Chinese policies regarding environmental protection, effects of
human activities on land use in this area are very limited in recent
years. The dominant soil types are Inceptisols and Mollisols, accord-
ing to Soil Taxonomy (Soil Survey Staff, 2014).

2.2. Datasets

2.2.1. Soil samples
Soil surveys were conducted in 2012 and 2013 and produced

105 soil sampling profiles (Fig. 1). In the study area in the Tibetan
Plateau, field sampling is difficult due to access constraints. To char-
acterize high spatial variability of soil properties on such a large
scale, a sampling strategy needs to be carefully considered. A pur-
posive sampling strategy (Zhu et al., 2008) was used in our study.
Briefly, sample sites were selected based on the variability of soil-
forming factors that were expected to represent the heterogeneity
of the soil in the study area, including elevation, climate, land use
and parent material. This approach can result in a small number
of typical soil samples. In addition, the accessibility of each sample
site was evaluated based on traffic data to improve the sampling
efficiency. Soil profiles were described down to a depth of 1.2 m or
to bedrock. Samples of pedologic horizons were collected for physi-
cal and chemical analyses (Cooperative Research Group on Chinese
Soil Taxonomy, 2001). Each sample contained approximately 1 kg
of soil. In the laboratory, the samples were air dried and passed
through a 2-mm sieve. Analyses for SOC content (g kg−1) were per-
formed using the classic Walkley-Black method (Zhang and Gong,
2012). The SOC content of the topsoil (i.e., depths of 0–20 cm)  was
then calculated using a depth-weighted average function for each
profile and log-transformed to improve linear modeling by mini-
mizing the rightward skew of the untransformed variable.

2.2.2. Environmental variables
Environmental variables were collected and transferred to a

geographic information system (GIS) raster layer at a 90-m reso-
lution using ArcGIS 10.0 (ESRI Inc., USA). To accurately map the
SOC spatial distribution, environmental predictors with a high res-
olution are necessary. Although higher spatial resolution would
provide more-detailed information (i.e., resolution as good as
10 m),  predictors at a 90-m resolution used in this study are accept-
able considering the widespread extent of the data and the low
computational efficiency that would result from the use of a large
data set. The relationships between SOC and the environmental
variables are presented in Fig. 2. These variables are listed below.

1. A digital elevation model (DEM) and its derivatives. A 90 m res-
olution freely available DEM from the Shuttle Radar Topography
Mission (SRTM, version 4.1) was  used. Five derivatives were
determined, including elevation, slope, aspect, catchment area
(CA) and SAGA topographic wetness index (TWI). SAGA topo-
graphic wetness index is based on a modified catchment area,
and it tends to predict a more realistic and higher potential
soil wetness than conventional topographic wetness index for
cells situated in valley floors with a small vertical distance to a
channel (Boehner et al., 2002). Aspect was  expressed in absolute
values in the range of 0 to 180◦, representing north and south,
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