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a  b  s  t  r  a  c  t

Soil  heavy  metal  concentrations  exhibit  significant  space-time  trends  due  to their  accumulation  along
the time  axis  and  the  varying  distances  from  the  pollution  sources.  Thus,  concentration  trends  cannot  be
ignored  when  performing  spatiotemporal  soil  heavy  metal  predictions  in an  area.  In this  work,  datasets
were  used  of soil cadmium  (Cd)  concentrations  in the  Qingshan  district  (Wuhan  City,  Hubei  Province,
China)  sampled  during  the  period  2010–2014.  Spatiotemporal  Kriging  with  four  Trend  models  (STKT)
and  non-separable  space-time  correlation  was  implemented  to  assimilate  multi-temporal  data  in the
mapping  of  Cd distribution  within  the  contaminated  soil  area.  Soil  Cd  trends  were  represented  by four
different  space-time  polynomial  functions,  and  a  non-separable  power  function-exponential  variogram
model  of  Cd  distribution  was  assumed.  Plots  of  the  predicted  space-time  Cd  distributions  revealed  a
marked  tendency  of  the  Cd  concentrations  over  time  to  spread  from  the  southwest  part  to the  entire
study  area  (higher  soil  Cd  concentrations  are  found  in the  southwest  part  of  the  Qingshan  area,  whereas
the  temporal  Cd  trend  is characterized  by a constant  increase  from  2010  to  2014).  Thus,  the maps  indicate
that  the  entire  study  area  is contaminated  by  Cd, a situation  that  seems  to be  stable  over  time.  STKT  can
reduce  prediction  errors  in  practically  and  statistically  significant  ways.  A numerical  comparison  of the
STKT  technique  vs. the  mainstream  Spatiotemporal  Ordinary  Kriging  (STOK)  technique  showed  that  STKT
can perform  better  than STOK  when  the trend  model’s  goodness  of fit  to the Cd  data  was  satisfactory
(producing minimal  data  fit  error  statistics),  implying  that  adequate  trend  modeling  is a  key  issue  for
space-time  prediction  accuracy  purposes.  In  particular,  quantitative  results  obtained  at  the  Qingshan
region  showed  that, by incorporating  local  Cd  values  and  distance-based  dependence  structures  the
STKT  techniques  produced  the  best  prediction  error  statistics,  resulting  in considerable  prediction  error
reductions  (the  level  of  which  depend  on the trend  model  specification;  e.g.,  in the  case  of  STKT  with  trend
model  3  the  improvement  comparing  to STOK  was  almost  30%).  Future  studies  of  Cd  contamination  in
the region  (sampling  design  optimization)  can  benefit  from  the  results  of  the  geostatistical  analysis  of
the  present  paper  (variogram  and  trend  modeling,  etc.).

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Soil heavy metals have been identified as crucial components of
the food chain and as important co-factors for many diseases, such
as teratogenic, toxic, and cardiovascular diseases (De Vivo et al.,
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2008; Giaccio et al., 2012; Morton-Bermea et al., 2009). With indus-
trialization and urbanization, the concentrations of heavy metals
in soils became increasingly higher (Li et al., 2009; D’Emilio et al.,
2013; Fernandez et al., 2007). Thus, the adequate characteriza-
tion of the composite space-time variability of soil heavy metals is
extremely important in a variety of agronomic and environmental
activities. Spatiotemporal (ST) Geostatistics offers a variety of mod-
eling and prediction techniques, such as Spatiotemporal Kriging
in its various forms (STK, Christakos, 1991, 1992), and spatiotem-
poral Bayesian Maximum Entropy (BME, Christakos, 1998, 2000).
During the last few decades, spatiotemporal techniques have been
applied in a variety of earth, environmental, and health studies,
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such as springwater ion processes (Christakos and Bogaert, 1996),
thermometric data (Bogaert and Christakos, 1997), soil water con-
tent (Snepvangers et al., 2003; Jost et al., 2005), soil salinity content
(Douaik et al., 2005), radioactive soil contamination (Savelieva
et al., 2005), El Niño effects (Choi et al., 2006), air pollution (Pang
et al., 2009; Yu et al., 2009; Kolovos et al., 2010; Akita et al., 2012;
Kloog et al., 2014), and infectious disease mapping (Choi et al., 2008;
Angulo et al., 2013). However, there has been relatively little con-
cern in the literature as regards the ST modeling and mapping of
soil heavy metals. For example, Modis et al. (2013) studied the spa-
tiotemporal distribution of soil heavy metals in an industrial area
assuming a spatially homogeneous/temporally stationary variation
of heavy metal concentrations. However, due to reasons like their
varying distances from the pollution source and their accumula-
tion along the time axis, heavy metal concentrations can exhibit
significant space-time trends, so that their variation cannot be rep-
resented by a fixed mean value over the study area during the
period of interest (i.e., the homogeneity/stationarity assumption
is not valid). In view of the above considerations, the analysis and
modeling of soil heavy metal trends should be an important compo-
nent of accurate and physically meaningful space-time prediction.

The present work focuses on soil heavy metal predictions by
means of the ST Kriging with a Trend (STKT) technique (Kyriakidis
and Journel, 1999; Snepvangers et al., 2003). The dataset used in
this study consists of soil cadmium (Cd) concentrations obtained at
the Qingshan district (Wuhan City, Hubei Province, China) during
the time period 2010–2014. The Cd trend models are determined in
terms of space-time polynomial functions (linear, quadratic, etc.)
of the relevant coordinates, and a non-separable variogram model
of an exponential-power function form is assumed to represent
the space-time dependency structure of the Cd distribution. Fur-
thermore, soil Cd concentrations are predicted using ST Ordinary
Kriging (STOK, Christakos, 1992; Bogaert, 1996), which ignores the
presence of any space-time trends. A numerical comparison of the
computationally less complex STOK vs. STKT is presented, and the
pros and cons of STKT compared to STOK are discussed in some
detail. This kind of comparison between Kriging techniques of dif-
ferent levels of complexity (ordinary, trend-dependent, etc.) is of
considerable interest in geostatistical modeling practice, although
the existing comparisons are restricted mostly to purely spatial
domains (e.g., Ahmed and De Marsily, 1987; Journel and Rossi,
1989; Zimmerman et al., 1999; Eldeiry and Garcia, 2010).

2. Materials and methods

2.1. Study area

The study area is located in the east of the Qingshan district
(latitude 30◦37′ N, longitude 114◦26′ E), which is one of the seven
districts of Wuhan city, the capital of Hubei Province (China).
Wuhan is the largest city in the middle reach of the Yangtze River in
China. There are some very large, heavy industry enterprises, such
as the Wuhan Iron & Steel Corporation, the China First Metallurgi-
cal Construction Co. Ltd., and the Wuhan Heavy Casting & Forging
plant. These factories were built in the center of the district. In the
east of the Qingshan district, close to those factories, the land was
used to plant crops and vegetables, such as rice, eggplant, cabbage,
and cayenne pepper. The regional planting history is about 30–40
years.

2.2. Sample collection and analysis

An elaborate soil study was performed in the area of interest
during the month of October, 2010. In this study, 124 topsoil sam-
ples (0–20 cm depth) were collected in the area of interest (Fig. 1).

We  found that there was a serious soil contamination situation.
In order to monitor the degree of contamination, we  collected
topsoil samples from the study area every year, from 2011 until
2014. The numbers of soil samples collected during 2011, 2012,
2013 and 2014 were 45, 48, 55, and 48, respectively (Fig. 1). All
sampling points were selected randomly. At each sampling point,
5 sub-samples were randomly collected and then mixed to obtain
a composite soil sample. Approximately 1 kg of each soil sample
was collected using a wood spade and stored in self-sealing plas-
tic bags. The spade was washed with de-ionized water and wiped
dry with paper towels between each use. Any foreign debris in the
soil samples was manually removed during sample collection. The
coordinates of each sample location were recorded with a help
of GPS. All soil samples were air-dried at room temperature, and
passed through a 0.15 mm sieve. The prepared soil samples were
then stored in polyethylene bottles for analysis.

The soil cadmium (Cd) concentrations of soil samples (digested
in Teflon beakers with a mixture of nitric acid, HNO3, and per-
chloric acid, HClO4, using a hot plane) were determined by means
of inductively coupled plasma mass spectrometry (ICP-MS, TMO,
USA). Quality assurance and quality control of Cd in soil sam-
ples were based on the determination of the metal contents in
blank and duplicate samples and standard reference materials
(GSS-3) obtained from the Center of National Standard Reference
Material of China. A subset of samples consisting of 25% of the
total number of samples available every year during the period
2010–2014 were randomly selected and served as the validation
set assessing the performance of the different space-time predic-
tion technique, including STKT with different trend models, and
STOK. The remaining 75% of the total number of samples served as
training points (see Section 2.3).

2.3. Spatiotemporal Kriging with Trend model (STKT)

2.3.1. The STRF formulation
Spatiotemporal attributes, such as soil Cd concentrations, are

physical attributes that develop simultaneously in space and time.
The aim of this study is the composite space-time prediction of
soil Cd concentrations, z(p) : p = (s, t), s = (s1, s2) ∈ S, t ∈ T, occurring
at a space-time point p, characterized by the geographical domain
S ⊂ R2 during a time period T ⊂ R. Specifically, Cd predictions z(p0)
are sought at unsampled space-time points p0 = (s0, t0) based on n
measurements z(pi) obtained at points pi = (si, ti), i = 1, . . .,  n. It is
assumed that z(pi) is a realization of a spatiotemporal random field
Z(p) (STRF, Christakos, 1992). In this study the STRF is assumed to
have the decomposition form

Z(p) = m(p) + R(p), (1)

i.e., the STRF has two  distinct components: (a) a mean component
m(p) representing the space-time Cd trend, and (b) a residual com-
ponent R(p) representing fluctuations of Cd concentrations around
that trend function. Using the STRF above, the present study aims
at the realistic reconstruction of the spatiotemporal Cd distribution
at the Qingshan district using all space-time data efficiently.

2.3.2. The trend component
In the STRF framework, the soil Cd distribution trend can be

represented quantitatively in terms of the space-time deterministic
series (Christakos, 1991)

m(s, t) =
∑�

�=0

∑�

�=0
b��f��(s, t) (2)

where f��(s, t) are � × � known basis functions expressing the mean
variation of the observed Cd dataset across space and time, b��

are unknown coefficients to be determined by data fitting, and
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