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a  b  s  t  r  a  c  t

Accurate  estimates  of  the  spatial  variability  of  soil  organic  matter  (SOM)  are  necessary  to  properly  eval-
uate  soil  fertility  and  soil carbon  sequestration  potential.  In plains  and  gently  undulating  terrains,  soil
spatial  variability  is  not  closely  related  to relief,  and  thus  digital  soil  mapping  (DSM)  methods  based
on  soil–landscape  relationships  often  fail in  these  areas.  Therefore,  different  predictors  are  needed  for
DSM  in the  plains.  Time-series  remotely  sensed  data,  including  thermal  imagery  and  vegetation  indices
provide  possibilities  for mapping  SOM  in  such  areas.  Two  low-relief  agricultural  areas  (Peixian  County,
28  km  × 28 km  and  Jiangyan  County,  38  km  × 50 km)  in  northwest  and  middle  Jiangsu  Province,  east
China,  were  chosen  as case  study  areas.  Land  surface  diurnal  temperature  difference  (DTD)  extracted
from  moderate  resolution  imaging  spectroradiometer  (MODIS)  land  surface  temperature  (LST),  and  soil-
adjusted  vegetation  index  (SAVI)  at the  peak  of growing  season  calculated  from  Landsat  ETM+  image
were  used  as predictors.  Regression  kriging  (RK)  with  a mixed  linear  model  fitted  by  residual  maximum
likelihood  (REML)  and residuals  interpolated  by simple  kriging  (SK)  were  used  to  model  and  map  SOM
spatial  distribution;  ordinary  kriging  (OK) was  used  as  a baseline  comparison.  The  root  mean  squared
error,  mean  error  and  mean  absolute  error calculated  from  leave-one-out  cross-validation  were  used  to
assess  prediction  accuracy.  Results  showed  that the proposed  covariates  provided  added  value  to  the
observations.  SAVI  aggregated  to  MODIS  resolution  was  able  to identify  local  highs  and  lows  not  appar-
ent  from  the  DTD  imagery  alone.  Despite  the  apparent  similarity  of the  two  areas,  the  spatial  structure
of  residuals  from  the  linear  mixed  models  were  quite  different;  ranges  on the  order  of  3 km  in  Jiangyan
but  16  km  in Peixian,  and  accuracy  of  best models  differed  by  a  factor  of  two  (3.3 g/kg  and  6.3  g/kg  SOM,
respectively).  This  suggests  that  time-series  remotely  sensed  data  can provide  useful  auxiliary  variable
for  mapping  SOM  in  low-relief  agricultural  areas,  with  three  important  cautions:  (1)  image  dates  must  be
carefully chosen;  (2)  vegetation  indices  should  supplement  diurnal  temperature  differences,  (3)  model
structure  must  be calibrated  for each  area.

© 2014 Published by Elsevier Ltd.

1. Introduction

Soil organic matter (SOM) is a crucial soil constituent related to
soil physical, chemical, and biological processes, soil fertility and
agricultural productivity. SOM is also a major component of the
global carbon pool (Yadav and Malanson, 2007). Current digital soil
mapping (DSM) methods to map  SOM are mostly based on quan-
titative soil–landscape relationship models using easily-obtained
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regional environmental factors (McBratney et al., 2003, 2000; Qi
et al., 2006; Thompson et al., 2006), especially geomorphometry,
vegetation, land cover and parent material. However, models
based on geomorphometry perform poorly in low relief areas
such as alluvial and coastal plains (Pei et al., 2010; Santos et al.,
1997; Stoorvogel et al., 2009; Zhu et al., 2010). Moreover, in old
agricultural areas such as east China long-term cultivation has
weakened the relationship between soil properties and land cover
(Ding et al., 1989; Zhu et al., 2010), and therefore DSM methods
based on soil–landscape relationships using geomorphometry and
land cover as predictors are often ineffective in these areas.

Recently, some attempts have been made to map SOM in
plains using DSM techniques and other predictors, such as using
multi- and hyper-spectral remote sensing (RS) (Chen et al., 2008;
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Stevens et al., 2010) and the soil line Euclidean distance calculated
from near-infrared remotely sensed data (Fox and Sabbagh, 2002).
Bartholomeus et al. (2011) used imaging spectroscopy and spectral
unmixing to map  soil organic carbon of partially vegetated agri-
cultural fields. Direct sensing of the soil has three disadvantages
(1) the soil surface is often obscured by vegetation; (2) the land
surface may  be obscured by clouds; and (3) only the surface few
millimeters are sensed.

With the development of multi- and hyper-temporal RS,
attempts have been made to use time-series analysis to model
spatial variability of soil properties. Chang et al. (2003) used the
brightness temperature of multi-temporal RS to identify soil tex-
ture in the southern Great Plains of North America based on an
artificial neural network applied to multiple drying cycles. Zhu et al.
(2010) developed a method called land surface dynamic feedbacks
(LSDF) based on Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery to differentiate the spatial variability of soil type
after a major rainfall event in low-relief areas with partial vege-
tation cover in Heilongjiang and Xinjiang, China. Liu et al. (2012)
mapped soil texture (sand, silt, and clay concentration) using LSDF
derived from MODIS after a major rain event in south-central Man-
itoba, Canada. Wang et al. (2012) predicted soil texture in Jiangyan
(one of our study areas, see below) using the changing pattern of
land surface diurnal temperature difference (DTD) derived from
MODIS land surface temperature (LST), based on fuzzy-c-means
clustering method. These researches suggested that soil proper-
ties that affect water content can be related to LST, DTD and their
change pattern.

The theory behind these results is as follows. Water has a much
higher thermal capacity than mineral or organic matter in soils, so
that wetter soils have higher thermal capacity, given a constant
composition (Verstraeten et al., 2006). Thus intra-day changes of
LST are reduced because of the increased thermal inertia; this is
reflected in lower DTD, which effect is most visible when the soil
is drying after a heavy rain (Huang, 2000). Wet  soils also have
slower decomposition of organic matter. Thus the hypothesis is
that in the long term, soils showing low DTD have high SOM con-
centration, and vice versa. Further, clay has a higher thermal inertia
than sand; this fact implies a positive feedback to the moisture
effect just noted: finer-textured soils retain more moisture and hold
it more tightly due to their finer pore-size distribution. Further,
clay provides both physical and chemical mechanisms protecting
SOM from microbial breakdown, while soils high in sand generally
have higher mineralization rates and thus lower SOM concentra-
tion (Hook and Burke, 2000; Konen et al., 2003; Oades, 1988). The
question remains to what degree these theoretical differences can
be seen by remote sensing.

Numerous spectral indices have been developed to characterize
land and vegetation cover, such as ratio vegetation indices, the nor-
malized difference vegetation index (NDVI) and the perpendicular
vegetation index (PVI) (Huete, 1988). As is well-known, SOM is a
key contributor of soil fertility. Thus it is expected that soil high in
SOM will be more fertile, promoting vegetative growth, resulting
in high values of these spectral indices. The soil-adjusted vegeta-
tion index (SAVI) developed by Huete (1988) has the advantage
of removing the soil background and thus being a better measure
of vegetation vigor, and we hypothesize, thus a partial surrogate
measure of SOM.

A spatially distributed variable (in this case, SOM) can be
accounted for by sum of deterministic and stochastic components,
which may  be termed a universal model of soil variation (Hengl,
2009):

Z(s) = Z∗(s) + ε + ε(s) + ε′(s) (1)

where Z(s) is the true (unknown value) of property Z at location
s, Z*(s) is a predicted value based on some deterministic model

from covariates (for example, RS products or geomorphometry),
ε(s) is a spatially-correlated random field of the residuals from the
deterministic component, and ε′(s) is pure noise. The determinis-
tic component is most conveniently formulated as a multivariate
linear model of the covariates, for example indices derived from
remote sensing products. The spatially-correlated component may
be fitted by variogram modeling and predicted with simple kriging
(SK); the sum of the two components has been termed regression
kriging (RK) (Hengl et al., 2007).

The linear models of deterministic components have often been
fitted by ordinary least squares (OLS), however, this does not take
into account the assumed spatial correlation of the model residuals
ε(s). If observations are design-based the fitted model is unbiased
(Brus and De Gruijter, 1993); however if observations are col-
lected by systematic sampling on transects, or grids, or without
any probability design (purposive sampling), OLS methods are not
appropriate. This is explained by Lark and Cullis (2004) and Lark
et al. (2006), who present a method to model and predict using
an “empirical best linear unbiased predictor” (EBLUP) with resid-
ual (sometimes called “restricted”) maximum likelihood (REML).
This statistical technique has been used in a few soil studies. The
previously mentioned two studies used soil water content as the
target variable and spatial trend as the co-variable. Chai et al. (2008)
found that REML-BLUP provided better-structured residual vari-
ograms and more accurate prediction of SOM than RK with the
external drift by computed by OLS; this study used geomorpho-
metric co-variables. Santra et al. (2012) obtained similar results for
soil hydraulic properties, also using geomorphometric co-variables.

Based on the direct, indirect and interactive relationships
between SOM, soil moisture, soil texture and the change of sur-
face soil temperature, our hypothesis is that DTD could reflect the
spatial variability of SOM when the soil is drying after an adequate
rain event following a prolonged dry period. The objectives of this
study were (1) to examine this hypothesis and how much infor-
mation of SOM can be explained by appropriately-chosen DTD in
low-relief agricultural areas, (2) to examine the sensitivity of mod-
els to the lag between a rain event and DTD, and (3) to predict SOM
concentration by RK, with the deterministic model fitted by gener-
alized least squares (GLS) using REML, and determine the relative
contributions of DTD, SAVI and soil type to model success. We  also
wanted to see how well the method performs in general, so we
selected two apparently similar areas in the same province and to
see if the method would give similar results in both.

2. Materials and methods

2.1. Description of the study area and soil

Both study areas are in Jiangsu Province, East China, in the
lower Yangtze River delta and East Sea coastal plain. The first
area is Peixian County, 28 km × 28 km,  116◦44′48′′–117◦3′8′′ E,
34◦30′16′′–34◦45′28′′ N, in northwest Jiangsu (Fig. 1a). Elevation
ranges from 30 to 50 m decreasing from southwest to north-
east. The climate is warm temperate and semi-humid monsoon,
mean annual temperature 14.2 ◦C, precipitation 820 mm,  and sun-
shine duration 2308 h. Soil parent materials are carbonate-rich
paleo-alluvium in the southwest and lacustrine sediments in the
northeast. According to Chinese Soil Taxonomy (CST) (Gong et al.,
2003) the soils are Calcaric and Parasalic Ochri-Aquic Cambosols
mapped as four soil series (Fig. 1a) (CRGCST, 2001). The textures
vary considerably, with the finer textures from lacustrine parent
materials in the northeast and coarser textures from the paleo-
alluvium the southwest (OSSPC, 1984). The dominant land uses
are dryland and paddy field, accounting for 49% and 31% of the
total study area (Fig. 2a); these largely follow the distribution of
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