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We classified land cover types from1940s historical aerial imagery using Object Based Image Analysis (OBIA) and
compared these maps with data on recent cover. Few studies have used these kinds of maps to model drivers of
cover change, partly due to two statistical challenges: 1) appropriately accounting for spatial autocorrelation and
2) appropriatelymodeling percent coverwhich is bounded between 0 and 100 and not normally distributed.We
studied the change in woody cover at four sites in California's North Coast using historical (1948) and recent
(2009) high spatial resolution imagery. We classified the imagery using eCognition Developer and aggregated
the resulting maps to the scale of a Digital Elevation Model (DEM) in order to understand topographic drivers
of woody cover change. We used Generalized Additive Models (GAMs) with a quasi-binomial probability distri-
bution to account for spatial autocorrelation and the boundedness of the percent woody cover variable. We
explored the relative influences on current percent woody cover of topographic variables (grouped using
principal component analysis) reflecting water retention capacity, exposure, and within-site context, as well as
historical percent woody cover and geographical coordinates. We estimated these models for pixel sizes of 20,
30, 40, 50, 60, 70, 80, 90, and 100 m, reflecting both tree neighborhood scales and stand scales. We found that
historical woody cover had a consistent positive effect on current woody cover, and that the spatial
autoregressive term in the model was significant even after controlling for historical cover. Specific topographic
variables emerged as important for different sites at different scales, but no overall pattern emerged across sites
or scales for any of the topographic variables we tested. This GAM framework for modeling historical data is
flexible and could be used with more variables, more flexible relationships with predictor variables, and larger
scales. Modeling drivers of woody cover change from historical ecology data sources can be a valuable way to
plan restoration and enhance ecological insight into landscape change.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Historical ecology is a flourishing interdisciplinary area of study
concernedwith the reconstruction of landscapes fromdecades to centu-
ries ago, often for the purpose of setting restoration targets (Grossinger,
2012; Sanderson, 2009; Swetnam et al., 1999). Increasingly, the field is

shifting from descriptions for restoration targets to include quantitative
modeling of long term landscape change (Whipple et al., 2011). This
development allows historical ecology to contribute to current under-
standings of the long term effects of global change. Our goal with this
study was to explore the challenges and opportunities inherent in the
quantitativemodeling of historical ecological data using relatively easily
available datasets, and to investigate ways to assess the validity of the
resulting models in the absence of ground-truth information. We used
these methods to investigate vegetation change (specifically, forest
densification) in coastal Northern California.

We used quantitative modeling of woody cover change from
historical imagery to ask and answer questions regarding the topographic
determinants of forest densification. The process of densification has
many undesirable consequences for forest ecosystem services, such as
increased fuel continuity and subsequent fire hazard, decreased
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heterogeneity and decreased resiliency, decreases in biodiversity due to
decreased light availability on the forest floor, and compromised tree
health due to more intense resource competition (Hanberry et al., 2014;
Knapp et al., 2013). This process is widespread in California due to
fire exclusion policies dating back more than 100 years (Laudenslayer
and Darr, 1990). Topographic variables representing water retention
capacity and exposure (including slope, aspect, elevation, curvature,
solar radiation, and topographic wetness index) have long been used to
predict vegetation characteristics (Deng et al., 2007; Franklin, 1995;
Jenkins and Coops, 2011). Though they themselves are static, topographic
variables can reflect underlying drivers such as solar exposure and mois-
ture accumulation, which could modify the dynamic effects of climate
change on cover.Many of these variables are easily calculated from aDig-
ital Elevation Model (DEM) and are often used in GIS modeling studies.
Our goal was to model the topographic determinants of current woody
cover while using historical woody cover from aerial photographs to ac-
count for historical conditions, and to compare the importance of these
factors in predicting current woody cover.

Historical aerial imagery, typically dating back to the 1930s and
1940s, is available throughout North America (Morgan and Gergel,
2013) and is often an important data source for historical ecology.
Though the imagery can be difficult to find and often requires extensive
pre-processing, classification of high spatial resolution black-and-white
images has become more common with the commercial availability of
Object Based Image Analysis (OBIA) software. OBIA allows analysts to
use textural and contextual information in classifying single band
images, and the use of OBIA with historical aerial photos has expanded
in the last 10 years (Allard et al., 2012; Laliberte et al., 2004; Marignani
et al., 2008;Martha et al., 2012; Pringle et al., 2009). Generally speaking,
most of the OBIA change detection literature is focused on innovations
in mapping techniques and their application to many different systems
(Conchedda et al., 2008; de Chant and Kelly, 2009; Desclée et al., 2006;
Dronova et al., 2011; Stow et al., 2008). The new goal, however, is not
just to map the change but to understand the drivers of the mapped
change, an interdisciplinary project involving bothmodeling and histor-
ical ecology (Gimmi and Bugmann, 2013). Among studies using OBIA to
classify historical aerial imagery, only a fewmodel the drivers of change
(Cserhalmi et al., 2011; Garbarino et al., 2013; Levick and Rogers, 2011;
Newman et al., 2014a,2014b; Platt and Schoennagel, 2009).

One issue that arises in combining historical aerial imagery with
DEM-derived topographic variables is the problem of scale mismatch
between ecological processes and data sources as well as between dif-
ferent data sources. Though geospatial data are becoming available on
finer and finer spatial scales, the available data are often at an arbitrary
resolution that is more constrained by data acquisition than the process
of interest (Deng et al., 2007). Different ecological processes may act at
different spatial scales (i.e., raster cell sizes) and different hierarchical
organization levels (e.g., individual tree, neighborhood, stand, site, land-
scape). For instance, a tree may compete for light with other trees in its
immediate neighborhood, but moisture accumulation may be a feature
of the topographyunderlying an entire stand of trees. These hierarchical
levels may not match spatial scales, and thresholds in the importance of
different variables may appear where emergent properties arise
(Bissonette, 1997). Ecologically, it would be ideal to explore the effects
of densification at multiple levels of the hierarchy, from the tree neigh-
borhood to the forest stand. Recent efforts to study changing forest re-
sponses at multiple spatial scales use simulation as a way to achieve
this goal (Seidl et al., 2013). Empirical studies on scaling relationships
for vegetation patterns so far have only correlated topographic variables
with vegetation indices at a range of spatial scales rather than testing
multiple variables at once while incorporating spatial autocorrelation
(Deng et al., 2007). Methodologically, there is a need for data driven
ecosystemmodeling using appropriate statistical models and especially
for scale sensitivity analysis of these models. Parameters for variables
that are clearly important will theoretically be consistent in magnitude,
direction, and significance for a range of cell sizes within an ecological

scale. Parameter instability over a small range of cell sizes may indicate
sensitivity to the particulars of the dataset. We therefore conducted our
analysis at a range of cell sizes in order to assess scale-sensitivity.

In this study, we used object based image analysis on high spatial
resolution images to map 1948 (historical) and 2009 (recent) woody
cover at four sites in northern California, USA. We modeled recent
cover as a function of topographic variables and historical cover using a
quasi-binomial Generalized Additive Model (GAM) with a nonparamet-
ric smooth function of the spatial coordinates.We used thesemodels at a
range of raster cell sizes to answer the following questions:

1. Did woody cover increase more at wetter sites (those with higher
annual rainfall)?

2. Did variables representing water retention capacity, exposure, and
local context within the site demonstrate significant and ecologically
reasonable relationships with recent woody cover, after controlling
for historical woody cover?

3. Were these relationships stronger at the neighborhood scale or at the
stand scale, and was a threshold effect apparent between the two
scales (Fig. 1)?

4. Were these results stable over several cell sizes within an ecological
scale?

2. Methods

2.1. Study areas

Four research siteswere established inNorthern California, primarily
in Humboldt County. The sites have a Mediterranean climate, with cool,
wet winters and hot, dry summers. Oak woodlands at our sites in
Humboldt County are characterized by California black oak (Quercus
kelloggii) and Oregon white oak (Quercus garryana) with an understory
predominantly composed of grasses and forbs. Densification from
woodland (defined as more than 30% cover with 150–300 trees/ha,
Agee, 1993) to closed canopy forest (greater than 300 trees/ha, Agee,
1993) can occur when mature oak canopies expand through annual
growth, but it more commonly occurswhen evergreen species, typically
Douglas-fir (Pseudotsugamenziesii), encroach intowoodlands over time,
forming a dense, shaded forest with little to no herbaceous understory.
This represents an ecosystem type change with many consequences
for biodiversity, forage production, and fire behavior (Engber et al.,
2011; Livingston, 2014; Thysell and Carey, 2001). Our sites were chosen
to represent several different latitudes and distances from the coast
where densificationwas known to occur: Iaqua Buttes, BaldHills,Willow
Creek, and Blake Mountain (Fig. 2, Table 1). Analysis polygons within

Fig. 1. Diagram of scaling effects. Dashed lines show confidence intervals, solid dots are
significant, while hollow dots are not significant (confidence interval overlaps zero).
Each dot is a raster cell size. Some parameters may be important for both scales, while
others show instability from scale to scale; and still others might indicate a threshold of
importance between the two scales indicating the potential for an emergent property.
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