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Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of
ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of
diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use
computer simulation to evaluate statistical characteristics of diet estimators for the populations they study.
Similar computer simulations have been used to explore and compare the performance of different variations of
the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature
data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been
selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algo-
rithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic prop-
erties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The
algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than
those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus
maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas
of quantitative ecology in which bootstrap samples are post-processed prior to their use.

Published by Elsevier B.V.

1. Introduction

Knowledge of predator diets provides critical insights into many
aspects of their behavior and ecology. Quantitative fatty acid signature
analysis (QFASA) is a popular method of estimating diets, particularly
for marine species (Bowen and Iverson, 2013). QFASA is based on
compositional vectors of fatty acid proportions (termed signatures),
with diet estimated as the linear mixture of prey signatures that mini-
mizes a measure of distance between modeled and observed predator
signatures (Iverson et al., 2004).

The statistical performance of estimators and other analytical tech-
niques in many fields of quantitative ecology is commonly evaluated
using computer simulation (e.g., Aing et al., 2011; Baasch et al., 2010;
Brenden and Zhao, 2012; Elphick, 2008; Peñaloza et al., 2014). QFASA
is no exception, as several investigators have used computer simulation
to evaluate one or more aspects of diet estimator performance for their
specific application (e.g., Haynes et al., 2015; Thiemann et al., 2008;
Wang et al., 2010). Investigators have also used computer simulation
to investigate the performance of QFASA estimators from a methodo-
logical perspective (e.g., Bromaghin et al., 2015, in press; Iverson et al.,
2004; Neubauer and Jensen, 2015; Stewart and Field, 2011).

EvaluatingQFASA estimatorswith simulation involves comparing the
known and estimated diets of “pseudo-predators,”whose signatures are

generated from multiple bootstrap samples of prey signature data
(Iverson et al., 2004). Simulating predator signatures is therefore more
complicated than some bootstrapping procedures because it involves
multiple steps. A diet (fixed prey mixture proportions) is first specified,
which determines the expected value of a pseudo-predator signature
as a function of diet and the mean signature of each prey type. Given
specification of a diet, individual prey signatures are sampled with
replacement from the observed signature data of each prey type, inde-
pendently for each pseudo-predator. The mean signature of each prey
type is then computed from each sample and a pseudo-predator signa-
ture is computed as the weighted average of the mean prey signatures,
with the diet proportions as weights. Conditioned on a specific diet, the
variance among pseudo-predator signatures therefore depends upon
the variance among themean prey signatures, which is in turn a function
of prey-type sample sizes and the individual prey signatures sampled
(or “consumed”) from each prey type for each pseudo-predator.

Objective guidance on the selection of prey bootstrap sample sizes
appears absent from the QFASA literature; indeed, investigators do
not always specify the sample sizes used (e.g., Haynes et al., 2015;
Thiemann et al., 2008; Wang et al., 2010). Iverson et al. (2004) used a
subjectively selected modest sample size applied equally to all prey
types. Conversely, Bromaghin et al. (2015) used bootstrap sample
sizes equal to the sample size of each prey type in the prey signature
data, which would tend to be larger. Neither approach is justifiable
because bootstrap sample sizes directly influence variability in pseudo-
predator signatures, perhaps producing signatureswith unrealistic levels
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of variation that may subsequently affect statistical properties of the diet
estimator. Bromaghin et al. (2015) seemed at least partially aware of this
potential, noting that the relatively large sample sizes they used likely
produced pseudo-predator signatures with less variance than might be
observed among signature samples from free-ranging predators.

I present an algorithm to objectively establish bootstrap prey sample
sizes for simulation investigations of QFASA diet estimator performance.
Conditioned on a specific diet, the algorithm determines prey sample
sizes that approximate the variation in observed predator signature data
due solely to the sampling of individual prey animals from prey types.
Although the algorithm is groundedwithin the context of QFASA, the con-
ceptual approach may have value in assessing diet estimators based on
other biomarkers, such as stable isotopes (e.g., Chiaradia et al., 2014), or
more generally in other situations requiring post-processing of multiple
bootstrap samples prior to their application.

2. Material and methods

The algorithm is based on the conceptualization of predator signature
variance being attributable to two sources: variation in diet among pred-
ators and variation in the individual prey consumed given a diet. Because
pseudo-predator signatures are generated conditioned on a specific diet,
the degree of variation in predator signatures attributable only to the
prey consumedmust be determined. Consequently, the diets of a sample
of free-ranging predators are estimated and the variances among the
estimated diets and the observed signatures are computed for each pos-
sible pair of predators. If dit is the estimated diet proportion for predator i
and prey type t, sif is the signature proportion for predator i and fatty acid
f, nt is the number of prey types, and nf is the number of fatty acids, the
variance between the estimated diets of predators i and i' was computed
as

vd
ii
0 ¼

Xnt
j¼1

0:5 di j þ di0 j

� �2
−2di jdi0 j

and the variance between the signatures of predators i and i' was com-
puted as

vs
ii
0 ¼

Xn f

f¼1

0:5 sif þ si0 f

� �2
−2sif si0 f :

The quantity within the summation of both equations is algebraically
equivalent to the empirical sample variance of a sample of size 2.

The empirical relationship between (vs
ii
0 , vd

ii
0 ) pairs was used to ap-

proximate the limit of the variation between signatures as the variation
between diets approached 0, denoting nearly identical diets. Although
there are numerous ways this could be done, I used a nonparametric
loess smoother to approximate the relationship between (vs

ii
0 , vd

ii
0 ) pairs

and identified the predicted value of the variation between signatures
for the pair of predators with the minimum observed variation in diets.
This predicted value was denoted VT because it serves as the target
level of variation to achieve among bootstrap-generated pseudo-
predator signatures.

The bootstrap prey sample size algorithm is based on the empirical
sample variance among the signature proportions for each fatty acid
within each prey type, i.e., stf2, where s2 is the usual empirical single-
sample variance, t denotes prey type, and f denotes fatty acid. Because
it is computationally inefficient to bootstrap sample a large number of
prey from a type that is not important to the diet, stf2 is down-weighted
by the proportion of each prey type in the diet πt. In addition, all of the
variance within a prey type is essentially acquired if the bootstrap
sample size reaches the observed sample size. Consequently, one could
cap the bootstrap prey sample size at the observed sample size for
each prey type or, as I have done, down-weight the variances stf2 by the

proportion of the observed prey sample size included in the bootstrap
sample. The weighted variance measure on which the algorithm is
based is therefore

~s2t f ¼ πt 1−
mb

t

mt

� �
s2t f

where mt is the observed sample size of prey type t and mt
b is the

number of that prey type in the bootstrap sample.
Given the preliminary computations ofVT and stf

2 and the specification
of a diet πt, the sample size algorithm consists of the following iterative
steps.

a. Start with a sample of sizemt
b=1 from each prey type and compute

~s2t f . If the diet proportions πt for someprey typeswere exactly 0, their
starting sample size could alternatively be set at 0.

b. For each of a specified number of pseudo-predators, draw a boot-
strap sample of the prey data with the current sample size for each
prey type, compute themean signature for each prey type, and com-
pute the pseudo-predator signature as a weighted average of the
mean prey signatures using the diet proportions as weights.

c. Compute the empirical sample variance among the pseudo-predator
signature proportions for each fatty acid and sum the variances
across fatty acids, resulting in the variance measure V*. If V* ≤ VT,
stop; the current bootstrap sample sizes produce pseudo-predator
signatures with the correct expected value (mean) and a realistic
level of variance; otherwise, continue.

d. Identify the fatty acid among the predator pseudo-signatures with
the greatest variance, i.e., contributing most to V*, say fatty acid k.

e. Identify the prey type q with the maximum value of ~s2tk , increment
the bootstrap sample size of prey type q by 1, update the values of
~s2qk to reflect the increase in the bootstrap sample size, and return
to Step b.

3. Results

The sample size selection algorithm is illustrated using a predator
data set containing 61 signatures from adult male polar bears (Ursus
maritimus) of the Chukchi Sea (courtesy U.S. Fish and Wildlife Service,
Marine Mammals Management, Anchorage, Alaska) and a prey
data set with signatures of 357 prey from 7 marine mammal species
known to be eaten by polar bears or available in the region and poten-
tially eaten by polar bears. The prey data were compiled from sources
at Dalhousie University (http://dx.doi.org/10.15273/10222/57254)
and the U.S. Geological Survey, Alaska Science Center (http://dx.doi.
org/10.5066/F7PR7T2W). Rode at al. (2014) and Bromaghin et al.
(2015) provide additional information about these data. The diets of
individual polar bears were estimated using the extended dietary
suite of 41 fatty acids (Iverson et al., 2004), the “all mink” calibration co-
efficients of Thiemann et al. (2008), and the Aitchison distancemeasure
in the predator optimization space (Bromaghin et al., 2015). One
hundred pseudo-predator signatures were generated at each step of
the algorithm.

For these data, themean value of vs
ii
0 increasedmodestly as the value

of vd
ii
0 increased from 0.0 to approximately 0.05, after which the rate of

increase moderated (Fig. 1). The minimum observed value of vd
ii
0 was

8.087e−6 and the corresponding predicted (mean) value of vs
ii
0 from

the loess smooth was 9.048e−4, which was taken as the target level
of variation VT. Sample size determination was conditioned on the
mean of the estimated diets among adultmale polar bears: 47.0% beard-
ed seal (Erignathus barbatus), b 0.0% beluga whale (Delphinapterus
leucas), 13.8% bowhead whale (Balaena mysticetus), b 0.0% ribbon seal
(Histriophoca fasciata), 38.1% ringed seal (Pusa hispida), 1.0% spotted
seal (Phoca largha), and b0.0% Pacific walrus (Odobenus rosmarus).
Note that this estimated mean diet differs somewhat from the estimate
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