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Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of
which has implications for predicting the environmental response to changes in climate and biodiversity.
However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology,
few assumptions can be made about the data and complex, spatially varying interactions can be recovered
from collectedfield data. In this study,we compare Bayesian networkmodelling approaches accounting for latent
effects to reveal species dynamics for 7 geographically and temporally varied areaswithin the North Sea.We also
apply structure learning techniques to identify functional relationships such as prey–predator between trophic
groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect
overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden
variable can model unmeasured group of species. The general hidden variable appears to capture changes in
the variance of different groups of species biomass. Models that include both general and specific hidden vari-
ables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmea-
sured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the
models' features and across the different spatial areas thus proposing a model that allows for spatial autocorre-
lation and two hidden variables. Our proposedmodel was able to produce novel insights on this ecosystem's dy-
namics and ecological interactionsmainly becausewe account for the heterogeneous nature of thedriving factors
within each area and their changes over time. Our findings demonstrate that accounting for additional sources of
variation, by combining structure learning from data and experts' knowledge in the model architecture, has the
potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to dis-
cover meaningful functional networks that were spatially and temporally differentiated with the particular
mechanisms varying from trophic associations through interactions with climate and commercial fisheries.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Fisheries and ecoinformatics

In recent decades it has become clear that ecosystem structure and
function can change over relatively short time scales (Scheffer et al.,
2001). Changes in the marine environment are believed to be more

rapid in the 21st century causing both ecological and industrial implica-
tions (Fernandes et al., 2013). Therefore being able to predict the dynam-
ics of the species and their environment at spatially and temporally
resolved scales, is of growing importance for the protection of natural bio-
diversity and human resourceswhich poses new challenges for analytical
tools and computational statistics (Aderhold et al., 2012).

One way to understand ecosystem dynamics is examination of the
functional relationships (such as prey–predator, Fig. 1) between species
along with their interaction with stressors such as temperature change
and fisheries exploitation in their potential habitat (space) and across
time. In this way, learning functional relationships can provide a metric
for assessing community structure and resilience in response to natural
and anthropogenic influences (Gaston et al., 2000). If we can model the
function of the interaction rather than the species itself, data can be
used to confirm key functional relationships and to predict impacts of
forces such as fishing and climate change.
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The North Sea is a diverse ecological system with complex climate–
ocean interactions and exploited fisheries since 1900 (Smith, 1994).
Significantwarming trends are evident throughout but themost intense
are documented in the southern and eastern North Sea (Simpson et al.,
2011). Exploitation has led to significant reductions in the abundance of
some target species and non-target species have been impacted because
of incidental catch and subsequent discard (Gislason, 1994). Fishing
pressure can change the structure of marine populations and conse-
quently influence the nature of their responses to climate (Planque
et al., 2010), which could have impacts on the value of commercial fish-
eries (Perry et al., 2005). Due to the high biological productivity and
valuable fisheries resources of the North Sea, understanding the species
dynamics and modelling their interactions with external stressors over
space and time, is of primary interest in the present work.

1.2. Functional network models

Interactions among species make it difficult to predict how ecological
communities will respond to environmental degradation, yet to do sowe
must understand the functional networks that form the systems (Dunne
et al., 2002). The functional network approach to understand community
structure and resilience is an on-going approach combining known topo-
logical features of food webs with quantitative variation in species inter-
actions with their environment and surrounding stressors to predict
community stability. Recently, an approach has arisen in biology that is
capable of inferring network structures, capturing nonlinear, dynamic
and arbitrary combinatorial relationships: Bayesian networks (BNs)
(Heckerman et al., 1995). BNs have been applied to reveal gene regulato-
ry networks using genemicroarray data (Friedman et al., 2000) andwere
shown to reveal known pathways of neural information networks from
brain electrophysiology data (Smith et al., 2006). Such a flexible tech-
nique capable of identifying the complex relationships involved in bioin-
formatics potentially offers a valuable method in ecological studies
(Milns et al., 2010). Therefore, ourwork aims to adapt this novelmethod-
ology to infer the network structure directly from the collected field data.

There has been significant progress in developingmodels using clas-
sical statistical techniques (Krivtsov, 2004) to understand the structure
and stability of some ecological networks in a changing environment,
however such methods often limit the underlying interactions from
expanding beyond the current food web paradigm (Faisal et al., 2010).
Our network approach of analysing multiple associations between
groups of species and their environment presents a more comprehen-
sive route to revealing interactions within the ecosystem (Aderhold
et al., 2012) directly from the data, rather than taking an “existing”
network structure and analysing it in terms of summary statistics. BNs
are efficient in integrating variables presented at different scales
(Wooldridge et al., 2005), allow empirical data to be combined with
existing knowledge (Uusitalo, 2007), operate within a data poor

environment (Uusitalo, 2007) and integrate the uncertainty associated
with species dynamics due to the action of multiple driving factors.

The objective of this paper is to model the species dynamics and
their interactions with external stressors at geographically and tempo-
rally varied areas within the North Sea. We evaluate the potential use-
fulness of Bayesian inference for ecological data by examining the
predictive capability of different dynamic BN architectures. We correct
for spatial autocorrelation by introducing a spatial node—a parent
node representing the spatial neighbourhood of a node. We also
account for latent variable effects by introducing two hidden
variables—one general to detect overall change in the species biomass
and another specific to capture spatial unmeasured effects. We produce
a novel approach of modelling ecosystem dynamics that accounts for
the heterogeneous nature of the driving factors within each spatial area
and their changes over time. We examine the models' accuracy in
predicting biomass, in response to any changes in temperature and fish-
eries catch or given there is a change in another species group biomass
and therefore aid towards the better understanding of North Sea trophic
dynamics, which is influential for futuremanagement options and long-
term viability of populations. We investigate not just functional
relationships between groups of species but also their interactions
with external stressors that vary across space and time in order to clarify
whatmechanisms are involved in shaping the functional ecological net-
works and derive insights on the community structure and resilience.

Methods in Section 2 describe the fisheries data and the use of BN
modelling techniques applied to the data. Results in Section 3 demon-
strate the predictive capability of all applied modelling approaches,
outlining the performance of the proposed latentmodel with spatial au-
tocorrelation, with analysis on the features of the hidden variables and
species interaction networks identified by structure learning. Finally,
the use of the techniques explored in this paper (namely, BNs, dynamic
models with latent variables, spatial node) is discussed in Section 4 in
terms of the wider fisheries literature.

2. Materials and methods

2.1. Data

The analyses are based on the database of the International Bottom
Trawl Survey (IBTS) for Quarter 1 (January to March), maintained by
the International Council for the Exploration of the Sea (ICES) and con-
ducted within ICES areas between 51–62 ∘ latitude (Fig. 2, only areas 1
to 7 were considered in the study here due to limited quality and consis-
tency of the data on the remaining spatial areas). These data are publical-
ly available from the ICESDatabase of Trawl Surveys (DATRAS;www.ices.
dk). The IBTS is a scientific fishing survey that follows a standard proto-
col: at each station, a GOV trawl is towed at 3 to 4 knots for a predefined
duration. All species caught in relatively low numbers are counted and
measured, whilst for very large catches, subsamples are taken and the
resulting data scaled to the total catch. The data are recorded as length–
frequencies by tow for each species and converted to catch per unit effort
(CPUE; numbers per length class per hour) using tow durations.

In the study, CPUE was extracted for the time window: 1983–2010
and converted to biomass (kg per hour), using length–weight relation-
ships and summing up over the same species and within the same year
(www.fishbase.org). Next, fish species were aggregated by summing up
the biomass into the relevant trophic group: pelagics (P), small piscivo-
rous (SP) and large piscivorous and top predators (LP) (FishBase was
used as a guidance point). The nature of individual species summed
into the trophic groups varied between the spatial areas but this was
not of importance since they were always aggregated into the correct
group. This was performed for each of the 7 areas and for each year in
the timewindow.We also have available biomass data for different zoo-
plankton species (source: ICES Working Group on Integrated Assess-
ments of the North Sea—WGINOSE) but we decided to sum the

Fig. 1. A generalized marine food web showing the functional relationships between
trophic levels where direction of links represents prey–predator interactions.
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