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The study of species' response is a key to understand the ecology of a species (e.g. critical habitat requirement and
biological invasion processes) and design better conservation and management plans (e.g. problem identifica-
tion, priority assessment and risk analysis). Predictivemachine learningmethods can be used as a tool formodel-
ing species distributions as well as for describing important variables and specific habitat conditions required for
a target species. This study aims (1) to demonstrate how habitat information such as species response curves can
be retrieved from a species distributionmodel (SDM), (2) to assess the effects of data prevalence onmodel accu-
racy and habitat information retrieved fromSDMs, and (3) to illustrate the differences between three data-driven
methods, namely a fuzzy habitat suitability model (FHSM), random forests (RF) and support vector machines
(SVMs). Nineteen sets of virtual species data with different data prevalences were generated using field-
observed habitat conditions and hypothetical habitat suitability curves under four interaction scenarios
governing the species–environment relationship for a virtual species. The effects of data prevalence on species
distributionmodelingwere evaluated based onmodel accuracy and habitat information such as species response
curves. Data prevalence affected both model accuracy and the assessment of species' response, with a stronger
influence on the latter. The effects of data prevalence on model accuracy were less pronounced in the case of
RF and SVMs which showed a higher performance. While the response curves were similar among the three
models, data prevalence markedly affected the shapes of the response curves. Specifically, response curves ob-
tained from a data set with higher prevalence showed higher tolerance to unsuitable habitat conditions, empha-
sizing the importance of accounting for data prevalence in the assessment of species–environment relationships.
In a practical implementation of an SDM, data prevalence should be taken into account when interpreting the
model results.
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1. Introduction

Species distribution models (SDMs) are an essential tool to analyze
species–habitat relationships, offering valuable information for conser-
vation decisions (see Guisan et al., 2013 for a comprehensive review).
In conservation planning, habitat suitability maps have been used to
identify potential sites that are important for a target species, whereas
species response curves, describing a species' response to a given habi-
tat condition, can illustrate specific habitat requirements for the species.
Specifically, response curves can support the decision-making process
for identifying and comparing designs and options for species conserva-
tion and management.

It is widely known that the model accuracy of an SDM is not inde-
pendent of the quality and quantity of data such as size (i.e. the number
of data points in a data set) and data prevalence (i.e. the proportion of
presences in a data set). This is partly because a species absence can

have multiple meanings: environmental absences (i.e. habitat condi-
tions are not suitable for a species), contingent absences (i.e. habitat
conditions are suitable but other factors such as biotic interactions, bar-
riers to dispersion or local extinction are responsible for the absence of
the species), and methodological absences (i.e. the species is present
but not detected) (Lobo et al., 2010), whereas observed presence is fac-
tual. The effects of data prevalence on SDMs have been studied using
real (Fukuda and De Baets, 2012; Václavík and Meentemeyer, 2012)
and virtual species data (Austin et al., 2006; Barbet-Massin et al.,
2012; Jiménez-Valverde et al., 2009; Lauzeral et al., 2012; Zurell et al.,
2012). Virtual species data are commonly used in these studies because
they provide perfect knowledge and allow for control over the uncer-
tainties, whereas the mechanisms that drive real species distributions
are unknown or only qualitatively understood by experts. Santika
(2011) reviewed and summarized that the effects of data prevalence
on model accuracy can be influenced by modeling algorithms, spe-
cies–habitat dependency, performance measures and threshold
selection methods that are used to convert the fitted probability of
occurrence into presence–absence of a species (see also references
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therein). Despite abundant literature, these studies focus mainly on
model accuracy, often disregarding the ecological relevance of a species'
response which can be retrieved quantitatively using SDMs. While
accurate models are often regarded as complex and uninterpretable,
there have been several approaches proposed from ecological modeling
and informatics (Fukuda, 2011; Olden et al., 2004) in order to visualize
so-called “black-box”models. As such, extracting ecological information
from predictive SDMs is of great importance for conservation decisions.
Such information can improve existing knowledge and methods for
tackling important questions in ecology such as niche shift and biologi-
cal invasions (Guisan et al., 2014).

Various techniques have been applied for building SDMs based on
presence–absence data, including statistical methods such as general-
ized linear models (GLMs) and generalized additive models (GAMs),
and computational intelligence techniques such as artificial neural net-
works, classification and regression trees (CARTs), fuzzy systems, genet-
ic algorithms (GAs), random forests (RF) and support vector machines
(SVMs) (see Guisan and Zimmermann, 2000, Ahmadi-Nedushan et al.,
2006 and Elith and Leathwick, 2009 for reviews). Hybridizations of
these techniques have also been used, but such application studies are
limited (see Van Broekhoven et al., 2007 and Fukuda et al., 2011 for ge-
netic fuzzy systems and Fukuda et al., 2006 and Fukuda, 2011 for fuzzy
neural networks). Alternatively, ensemble modeling is becoming popu-
lar in SDM studies (Lauzeral et al., 2012; Oppel et al., 2012). Specifically,
Lauzeral et al. (2012) demonstrated an iterative ensemble modeling
approach using GLMs, GAMs, CARTs and RF in order to reduce noisy
absences for better and reliable species distribution modeling. These
methods were not designed for deriving response curves and no study
has assessed the effects of data prevalence on species' responses.
Extracting habitat information from such advanced modeling methods
can contribute to a better understanding of ecological traits of a target
species and better applications of predictive but complex and less inter-
pretable modeling methods in ecology.

This study assesses how data prevalence affects model accuracy and
habitat information retrieved from SDMs based on virtual species
data with different prevalences. The virtual species data were gener-
ated based on a set of hypothetical univariate habitat suitability
curves aggregated with different forms of interactions between hab-
itat variables when calculating composite habitat suitability for the
species. Three correlative SDMs were developed using fuzzy habitat
suitability models (FHSMs), RF and SVMs in order to fit the virtual
species data. Based on the results from the three SDMs, this study
demonstrates how a univariate response curve, describing a partial
response for a habitat variable, can be derived from a multivariate
SDM and illustrates the differences in how these SDMs respond to
data prevalence in species distribution modeling and the assessment
of species–environment relationships.

2. Methods

2.1. Virtual species data

In this study, virtual species data were generated in order to avoid the
uncertainties in the species distributions in response to habitat conditions.
Three physical habitat variables, namely water depth (cm, henceforth re-
ferred to as depth),flowvelocity (cm s−1, velocity) and percent vegetation
coverage (%, vegetation; defined as the proportion of area covered with
aquaticplants in a surveyedpoint),wereobtained fromaseries offield sur-
veys conducted in an agricultural canal in Kurume City, Fukuoka, Japan
(33°20′N, 130°42′E). Four independent data sets were derived from the
surveys conducted on October 14, and November 5 and 9, 2004 and
April 25, 2005. Eachdata setwas comprised139data points in thefirst sur-
vey, 130 data points in the second survey, 86 data points in the third sur-
vey, and 88 data points in the fourth survey (i.e. 443 data points in total).

For generating virtual species data, hypothetical habitat suitability
was defined and composite habitat suitability was calculated using ob-
served habitat conditions. The hypothetical habitat suitability curves
(Fig. 1) are based on the ecology of Japanese medaka (Oryzias latipes),
a small freshwater fish found in and around paddy fields in Japan (see
Fukuda and Hiramatsu, 2008 for habitat suitability), and were
expressed by a sigmoid function for depth (Eq. (1)), a Gaussian function
for velocity (Eq. (2)), and a piecewise linear (trapezoidal) function for
vegetation (Eq. (3)):
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where Sd,i, Sv,i and Sveg,i are the habitat suitability for the individual hab-
itat variables of depth, velocity and vegetation, respectively, di, vi, and
vegi are the habitat variables in the ith survey point of the corresponding
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Fig. 1. Hypothetical habitat suitability curves: (a) water depth, (b) flow velocity and
(c) percent vegetation coverage.

Nomenclature

AM Arithmetic mean
AUC Area under the receiver operating characteristic curve
CART Classification and regression tree
FHSM Fuzzy habitat suitability model
GA Genetic algorithm
GAM Generalized additive model
GLM Generalized linear model
MX Mixed interaction
MSE Mean squared error
PR Product
RF Random forests
SDM Species distribution model
SISO Single-input single-output
SVM Support vector machine
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