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Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity.
To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of
deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However,
traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both
costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods
to identify species in automated audio recordings. In this study, a novel feature extraction method based on
wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertise-
ment call of each frog syllable is represented by a spectral peak track, from which track duration, dominant
frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant
frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet
decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition
sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the sta-
tistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally,
two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for
classification. In our experiments, we use two different datasets fromQueensland, Australia (18 frog species from
commercial recordings and field recordings of 8 frog species from James Cook University recordings). The
weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog
species respectively, which outperforms all other comparable methods.
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1. Introduction

During the past decades, a rapid decline in frog biodiversity has been
noted worldwide. There are many reasons for this decline, including
habitat destruction (Clauzel et al., 2015), invasive species (Shine,
2014), and climate change (Garcia et al., 2014). Researchers investigate
frogs to retain their biodiversity and develop effective protection
strategies. Due to the development of acoustic sensor techniques,
many sensors have been widely deployed for monitoring biodiversity,
which produces large volumes of acoustic data (Wimmer et al., 2013).
Compared with the traditional manual methods that require ecologists
to physically visit sites for collecting biodiversity data, acoustic sensors
can help collect audio data over larger spatio-temporal scales
(Wimmer et al., 2010; Gage and Axel, 2014) Since several gigabytes of
compressed data can be generated by an acoustic sensor per day,
enabling automating species identification in acoustic data sets has
become important (Zhang et al., 2013).

In recent years, acoustic data has been studied for the recognition and
classification of animal calls bymany researchers. Almost all the recogni-
tion and classificationmethods consist of four parts: pre-processing, syl-
lable segmentation, feature extraction, and recognition or classification.

Frog call classification has been addressed in several papers. Huang
et al. (2009) extracted spectral centroid, signal bandwidth, and
threshold crossing rate from each segmented frog syllable. Then, two
classifiers, k-nearest neighbour (k-NN) classifier and support vector
machine (SVM), were used for classification. However, signal band-
width and threshold crossing rate are very sensitive to the background
noise, which results in low classification accuracy in noisy environ-
ments. Han et al. (2011) introduced spectral centroid, Shannon entropy
and Rènyi entropy to classify frog calls with a k-NN classifier. Chen et al.
(2012) first calculated syllable length for pre-classification of frog calls
based on segmented frog syllables. Then, a multi-stage average spec-
trum was calculated for automatic recognition based on template
matching. However, extracting features based on the Fourier transform
has a tradeoff between time and frequency resolution, which restricts
thediscriminability of the features. Bedoya et al. (2014) proposed an au-
tomatic recognition system for frog calls based on the Mel-frequency
cepstral coefficients (MFCCs) and a fuzzy classifier. However, MFCCs
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are designed for the human auditory system, and might be not suitable
for the classification of frogs (Sahidullah and Saha, 2012). Meanwhile,
MFCCs are not suitable for dealing with recordings with a low signal
to noise ratio (SNR). In those previous studies (Huang et al., 2009;
Han et al., 2011; Chen et al., 2012; Bedoya et al., 2014) most features
used are either based on Fourier transform or transplanted from speech,
speaker andmusic fields. To further improve the recognition and classi-
fication performance, it is necessary to develop more accurate species
identification methods.

Wavelet analysis has been widely employed for acoustic data,
because it can preserve both frequency and temporal information
(Ren et al., 2008). Yen and Fu (2002) introduced wavelet packet trans-
form (WPT) for individual frog identification. After applyingWPT to the
frog calls, energy of all the node coefficient were calculated as features.
Then, Fisher's criterion (Yen and Lin, 2000) was used for dimension
reduction. Finally, the feature vector after dimension reduction was
fed into a neural network classifier for identification. Colonna et al.
(2012) proposed to use discrete wavelet transform (DWT) for frog call
classification. Based on the node coefficients of DWT, energy, power,
zero-crossing rate and pitch of each node coefficients were calculated.
However, applying WPT and DWT without any modifications cannot
provide a good frequency domain resolution for classifying frog calls.

In this study, the WPD is applied to the frog calls with an adaptive
frequency scale for feature extraction. Frog species that are genetically
similar often share close advertisement calls (Gingras and Fitch,
2013). Therefore, the dominant frequency which is directly calculated
from the trace of advertisement call is an important feature for differen-
tiating frog species. We use dominant frequency to produce the
frequency scale for WPD, which is different from using minimum and
maximum frequency to generate the frequency scale for WPD in Ren
et al. (2008). Specifically, continuous acoustic data are first segmented
into syllables using Härmä's method (Harma, 2003). Then, spectral
peak tracks are extracted from each syllable where possible. Three fea-
tures are extracted from each track: track duration, dominant frequency

and oscillation rate. Next, a k-means clustering algorithm is applied to
the dominant frequency, and the centroids of clustering results are
used to generate the frequency scale for WPD. After applying the adap-
tive frequency scaled WPD to the frog calls, a new feature set named
adaptive frequency scaledwavelet packet decomposition sub-band cepstral
coefficients (AWSCCs) is extracted. Finally, two classifiers, a k-NN classi-
fier and a SVM classifier, are employed for the classification with the
proposed feature set.

2. Methods

The architecture of the proposed classificationmethod consists of five
modules: syllable segmentation, syllable feature extraction, adaptive
frequency scale generation, WPD feature extraction and classification
(see Fig. 1). Each module is described in the following sections.

2.1. Sound recording and pre-processing

Two datasets obtained from a commercial recording (Stewart, 1999)
and James Cook University (JCU) were selected for this study. Record-
ings, which were collected from the CD, are two-channel, sampled at
44.10 kHz and saved in MP3 format. All recordings were obtained
with a directional microphone and have a high signal to noise ratio
(SNR). Each recording includes one frog species, and has a duration
ranging from twenty-one to fifty-four seconds. The calls of eighteen
frog species recorded in Queensland, Australia were used to develop
the detailed methodology. To reduce the subsequent computational
burden, all recordings were re-sampled at 16 kHz per second, mixed
to mono, and saved in WAV format.

The JCU recordings were obtained from Kiyomi dam (S 19°22′
16 .0′ , E146∘27′31 .3″) BG creek dam (S19∘27′1.23″ , E146∘24′5.65″)
and Stony creek dam (S 19∘24′07.0″ , E146∘2551.3) in Townsville,
using Song Meter (SM2) (Xie, 2016). The recordings were stored on
16 GB SD cards in 64 kbps MP3 mono format and have a low

Fig. 1. Block diagram of the frog call classification system. The line of dashes indicates the extracted feature set. AWSCCs is the abbreviation of adaptive wavelet packet decomposition sub-
band cepstral coefficients. STFT is short-time Fourier transform. For STFT(1), the window function, size and overlap are Kaiser window, 512 samples and 25%. For STFT(2), the window
function, size and overlap are Hamming window, 128 samples and 90%. In this diagram, two feature sets are extracted, the description of other feature sets is shown in Fig. 6.
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