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A parameter-optimization process (model calibration) is usually required for numerical model applications,
which involves the use of an objective function to determine the model cost (model-data errors). The sum of
square errors (SSR) has beenwidely adopted as the objective function in various optimization procedures. How-
ever, ‘square error’ calculation was found to bemore sensitive to extreme or high values. Thus, we proposed that
the sum of absolute errors (SAR) may be a better option than SSR for model calibration. To test this hypothesis,
we used two case studies—a hydrological model calibration and a biogeochemical model calibration—to investi-
gate the behavior of a group of potential objective functions: SSR, SAR, sum of squared relative deviation (SSRD),
and sum of absolute relative deviation (SARD). Mathematical evaluation of model performance demonstrates
that ‘absolute error’ (SAR and SARD) are superior to ‘square error’ (SSR and SSRD) in calculating objective func-
tion for model calibration, and SAR behaved the best (with the least error and highest efficiency). This study sug-
gests that SSR might be overly used in real applications, and SAR may be a reasonable choice in common
optimization implementations without emphasizing either high or low values (e.g., modeling for supporting
resources management).

Published by Elsevier B.V.

1. Introduction

Numerical models have been widely used in environmental science
for understanding the natural processes, predicting impacts of global
changes, and decision making for the sustainable management of re-
sources. As knowledge of physical processes grows, models become
more sophisticated and more parameters may be introduced (Beck,
1999; Brun et al., 2001; Legates and McCabe, 1999). We can see exam-
ples of the continuous developments of process-based models such as
Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012; Arnold
et al., 1998) in hydrology and Erosion Deposition Carbon Model (EDCM)
(Liu et al., 2003), a modified version of CENTURY (Parton et al., 1994),
in ecology. These mathematical models include some parameters that
need to be calibrated through an optimization procedure, which is to
sample the parameter values from the allowable ranges until the value
of the objective function (i.e., a function of differences between observa-
tions and simulations) is minimized or maximized (Diskin and Simon,
1977; Legates and McCabe, 1999; Nash and Sutcliffe, 1970).

From a literature review, a number of objective functions were used
formodel calibration in hydrology such asmean squared error, absolute
mean/maximumerror, residual bias, andNash objective function (Boyle
et al., 2000; Diskin and Simon, 1977; Gupta et al., 1998; Servat and
Dezetter, 1991; Yapo et al., 1998). However, the sum of square errors
(SSR) is the most commonly used objective function for a variety of

optimization processes even in recent years (Confesor and Whittaker,
2007; Diskin and Simon, 1977; Gupta et al., 1998; Van Liew et al.,
2005; Zhang et al., 2009). We also observe use of SSR in some popular
optimization procedures such as the SWAT Auto-calibration Tool
(Green and van Griensven, 2008; van Griensven, 2006; van Griensven
et al., 2006), SWAT Calibration and Uncertainty Program (SWAT-CUP)
(Abbaspour, 2012), the Flexible Model Environment (FME) R package
(Soetaert and Petzoldt, 2010), and reservoir operation optimizations
(Jothiprakash and Shanthi, 2006; Momtahen and Dariane, 2007;
Raman and Chandramouli, 1996; Reddy and Kumar, 2006).

In evaluating model performances mathematically, studies have il-
lustrated that the correlation-based measures characterized by ‘square
error’ such as square correlation coefficient (r2) and Nash–Sutcliffe Effi-
ciency (NSE) are oversensitive to extreme values (outliers) and insensi-
tive to additive and proportional differences between observations and
simulations (Legates and Davis, 1997; Legates and McCabe, 1999;
Moore, 1991). Legates and McCabe (1999) proposed a modified NSE
(mNSE), which uses the ‘absolute error’ to replace the ‘square error’ in
the original NSE calculation to evaluate the goodness-of-fit of hydrolog-
ical models. For a similar purpose (avoiding oversensitivity to extreme
values), Krause et al. (2005) revised the NSE based on relative devia-
tions (i.e., replacing the ‘square error’ by ‘square relative deviation’).
Using multiple examples, they concluded that both mNSE and rNSE
can suppress the oversensitivity to peak values, and the latter is more
sensitive to the low values (Krause et al., 2005).

As stimulated by the above findings, we can infer that the widely-
used objective function, SSR, also emphasizes the extreme values of a
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set of observation data and neglects the low values during model
calibration because squaring calculation usually means a relatively larg-
er weight for peak or higher values. Thus, we hypothesize that using the
sumof absolute errors (SAR) and the sumof absolute relative deviations
(SARD) may be better than SSR and the sum of square relative devia-
tions (SSRD), respectively, for an environmental model calibration
without emphasizing either high or low values. The objective of this
study is to test this hypothesis by implementing model calibrations
using these four different objective functions and evaluating the corre-
spondingmodel performances. For this purpose, we used two large com-
plexmodels in different disciplines: the widely-used hydrological model
—SWAT—with a case study of monthly streamflow calibration in a head-
water area of the East River Basin in South China and the well-
established biogeochemical model—EDCM—with a case study of month-
ly gross primary production (GPP) calibration at a forest flux tower site
in the eastern United States.

2. Materials and methods

2.1. A hydrological model and a biogeochemical model

The hydrological model, SWAT was developed by the U.S. Depart-
ment of Agriculture (USDA) Agricultural Research Service for exploring
the effects of climate and land cover changes on water, sediment, and
agricultural chemical yields (Arnold et al., 1998). This physically-
based, watershed-scale, continuous model can simulate the hydro-
logical cycle, cycles of plant growth, the transportation of sediment,
and agricultural chemical yields on a daily time step (Arnold et al.,
1998, 2012; Neitsch et al., 2005). The latest version, SWAT2012,
was used in the current study.

The biogeochemical model, EDCM (Liu et al., 2003), is a modified
version of CENTURY (version IV) (Parton et al., 1994). EDCM uses up
to 10 soil layers to simulate the soil organic carbon (SOC) dynamics in
the whole soil profile instead of the one single top-layer structure of
CENTURY. EDCM can dynamically keep track of the evolution of the
soil profile and carbon storage as influenced by both soil erosion and de-
position (Liu et al., 2003). This process-based biogeochemical model is
used to simulate carbon and nitrogen cycles in diverse ecosystems at a
monthly time step (Liu et al., 2003; Tan et al., 2009). In particular, was
used to evaluate carbon dynamics across the entire conterminous
United States (Liu et al., 2014; Liu et al., 2012b; Zhu, 2011; Zhu et al.,
2010).

2.2. Modification of the modeling frameworks

To implement themodel calibration procedure for SWAT and EDCM,
we used the developed R-SWAT-FME (Wu and Liu, 2012, 2014) and R-
EDCM-FME (or EDCM-Auto) (Liu et al., 2012a; Wu et al., 2014), respec-
tively. The two frameworks were developed to provide a variety of
functionalities (e.g., parameter identifiability, optimization, and
sensitivity and uncertainty analysis) for the two models (SWAT and
EDCM), respectively. For the function of parameter optimization, the
pseudo-random search algorithm (PseudoOptim) of Price (Price,
1977; Soetaert and Herman, 2009) included in FME was used in the
current study, which was successfully tested for SWAT and EDCM
calibrations. Because the original FME package uses SSR only as the ob-
jective function to compute model cost (Soetaert and Petzoldt, 2010),
we modified the related function (modCost) to introduce the other
three objective functions (i.e., SAR, SSRD, and SARD) we proposed as
alternatives. The corresponding mathematical expressions of the four
objective functions are listed in Table A.1 in Appendix A.

2.3. Scenarios for comparing objective functions

For comparing the four objective functions, we set four scenarios
with one objective function being assigned for each scenario while

holding the others constant (such as optimization algorithm, input
data, and calibration time period) during model calibration. This kind
of scenario setting was the same for both hydrological modeling with
SWAT and biogeochemical modeling with EDCM.

2.4. Criteria to assess model performance

To assess different objective functions for model calibration, it is im-
portant to select a uniform andwidely-accepted set of evaluation criteria.
Because of the drawbacks (e.g., oversensitivity to extreme values) of
correlation-based measures (e.g., NSE and r2) (see Introduction), the
use ofmNSE andmeanabsolute error (MAE) terms for overall assessment
was recommended (Krause et al., 2005; Legates and McCabe, 1999). In
this study,we adopted these two terms as the primary criteria to evaluate
the model performances, although the other commonly-used terms NSE,
r2, and RMSE are also reported for reference. The mathematical expres-
sions of these five terms can be found in Table A.1 in Appendix A.

3. Case studies

We used two case studies to illustrate the performances of objective
functions during model calibrations on monthly streamflow and Gross
Primary Production (GPP)—the two primary variables in hydrology
and ecology, respectively.

3.1. Study area and model setup for hydrological modeling

To drive SWAT for the hydrological modeling, we used the headwa-
ter area of the East River Basin (i.e., the Xunwu River) in South China as
the case study, focusing on streamflow calibration, a common concern
in hydrology. The Lizhangfeng flow gaging station has a drainage area
of 1400 km2, and average annual precipitation is about 1648 mm in
this area. The sources of input data (e.g., climate, topography, soil, and
land use) are the samewithwhatweused in previous studieswhere de-
tails can be found (Chen andWu, 2012;Wu and Chen, 2013). In the cur-
rent study, the SWAT setup with discretization resulted in the
delineation of 11 subbasins and 67 Hydrological Response Units
(HRUs) for the specific area. The calibration procedure was conducted
using R-SWAT-FME with 5 years (1977–1981) of observed monthly
streamflow at Lizhangfeng, and six streamflow-related parameters
were selected in this study (see Table 1).

3.2. Study site and model setup for biogeochemical modeling

For biogeochemical modeling with EDCM, we used a forest flux
tower site—the Harvard Forest Environmental Monitoring Site, near
Petersham, Massachusetts, in the United States (Curtis et al., 2002;
Goulden et al., 1996)—with a focus on calibrating GPP, an elementary
term in the carbon cycle. Soil texture data from the Ameriflux website
indicate a soil composition of 66% sand, 29% silt, and 5% clay, with a
bulk density of 0.9 g/cm3. Monthly precipitation and air temperature
data were from the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) Climate Group (2012). Other model input data
(e.g., soil organic carbon)were from the national data layers for the con-
terminous United States of the Land Carbon project (Zhu and Reed,
2012, in press). The derived GPP data obtained from the Ameriflux
website were used as the observations during the 5-year (2001–2005)
model calibration using R-EDCM-FME, and four parameters were
involved in this procedure as listed in Table 1.

4. Results

Using the R-SWAT-FME framework, we derived a set of optimal pa-
rameter values for each objective function in streamflow calibration
(with the first case study of hydrological modeling). As listed in
Table 1, the four sets of parameter values are quite different under the
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