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Spatially-explicit simulation models can help state and local regulatory agencies to predict both the rate and
direction of the spread of an invasive species from a set of surveyed locations. Suchmodels can be used to develop
successful early detection, quarantine, or eradication plans based on thepredicted areas of infestation. Individual-
based models (IBMs) are often used to replicate the dynamics of complex systems and are both able to incorpo-
rate individual differences and local interactions among organisms, as well as spatial details. In this work, we
introduce a new stochastic lattice-based model for simulating the spread of invasive termites over a landscape
and compare it to a recently published stochastic individual-based approach, based on the same ecological pa-
rameters, with the goal of improving its computational efficiency. The two modeling frameworks were tested
over a homogeneous landscape with randomly located sources of infestation. Further, the setting of a case-
study of an invasive termite,Nasutitermes corniger (Motschulsky), was used to simulate the spread of the species
in Dania Beach, Florida, U.S.A., and the results of the proposed model were compared with an earlier application
of the IBM over the same area. The results show that the extent of the infested areas predicted by the new lattice-
based model is similar, thus comparable, to the individual-based model while improving the computation time
significantly. The simulation presented in this work could be used by the regulatory authorities to draw one or
more areas of intervention instead of wasting resources by randomly surveying unknown perimeters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Termites are serious pests of the urban environment and are respon-
sible for severe damage to structural lumber (Rust and Su, 2012). It has
been estimated that every year, in the continental United States alone,
termites cause property damage up to billions of dollars (Edwards and
Mill, 1986). Although human-assisted (also called anthropogenic)
dispersal can play a significant role in the rate of expansion of an
established exotic species, its nature is complex and unpredictable.
Termites are not “hitchhiking” insect pests, i.e. they cannot easily be
transported aboard commercial vehicles such as cars or boats. More
specifically, the nesting core of a termite colony must be moved intact
and both awater and food sourcemust be available to the core through-
out the movement (Hochmair and Scheffrahn, 2010). The natural
spread of termites is expected to proceed fairly slowly for twomain rea-
sons: (i) they are weak fliers and their reproductives (winged individ-
uals) can fly only a few hundred meters from the parent colony on

average each year (Nutting, 1969); and (ii) a termite colony takes at
least 4 years to mature and release the first reproductives from the
nest (Evans, 2011). Given the unpredictability of human-assisted
movements, it will be more useful here to restrict our study on termite
dispersal by naturalmeans and attempt to anticipate the rate and direc-
tion of termite spread.

The recent integration of Geographical Information Systems (GIS)
with simulation models, coupled with advances in computing power,
has allowed the development of spatially-explicit and dynamic simula-
tion models, such as individual-based models (IBMs, hereafter), and
lattice-based models, such as cellular automata (CA, hereafter) (Brown
et al., 2005). Both types of models have been introduced in ecological
modeling to capture the inherent complexity of various real-world
problems (Steyaert, 1993) as alternative approaches to solving mathe-
matical sets of equations such as partial differential equations (PDEs)
(Alexanderian et al., 2011; Holmes et al., 1994). Moreover, the intricacy
of a physical environment limits the applicability of mathematical
models for modeling realistic dispersal of invasive species (Pitt, 2008).
GIS allows for spatial complexity and simulation modeling takes GIS
visualizations into the domain of temporal dynamics. Early examples
of GIS-based simulation models include land-use change based on
the Markov process (Burnham, 1973), and discrete state models of
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flow and transport (e.g. transport of pollutants) (Maidment, 1996).
Other more recent computer-intensive approaches have been able to
incorporate ecological information at a population level with landscape
complexity (Wiegand et al., 2004).

While IBMs incorporate rules to describe the interactions between
individual units, such as organisms, in which each individual can have
a different set of behavioral, physiological, and other properties
(Huston et al., 1988), in CA modeling the basic units of the simulation
are discrete spatial cells, which can transition among different states
(e.g. empty, infested, quantified occupation). CAs are the most basic
form of lattice-based model and are able to model complex dynamics
from biological, social, or physical processes by using simple rules
(Toffoli and Margolus, 1987). Several improvements have been made
to basic CAs in the past decade to include underlying landscape differ-
ences,more complex rules for changes of state, and stochastic parameters.
Some examples of lattice-based models include wildfire spread models
(Clarke et al., 1994), spread models of invasive ants (Pitt, 2009), spatial
dynamics of urban and regional systems (Clarke and Gaydos, 1998),
and epidemic propagation (Mikler et al., 2005; Morley and Chang,
2004). In the past years, different computer simulation approaches
have been either compared (Ajelli et al., 2010; Lett et al., 1999) or inte-
grated (Sudshira, 2010).

In this work, we develop a new stochastic lattice-based model in
order to simulate the spatiotemporal spread of invasive termites. The
model developed herein includes a set of relevant ecological parameters
that can bemodified according to the species of interest. Our model dif-
fers frommore traditional CA approaches in that it is not based on rules
for state transition depending on the state of the focal cell as well as the
states of a defined set of neighboring cells. A recently published stochas-
tic IBM for the spread of invasive termites (Tonini et al., 2013) was used
as a benchmark for comparison with the newmodel in terms of predic-
tions, computational runtime, and code efficiency. The main purpose of
the newmodel is to improve computational speed over the IBMmodel,
which is costly in terms of computational time. We believe that the
model proposed herein represents a substantial improvement to the
IBM and could give the regulatory agencies a better tool for targeting
specific areas for survey, eradication, or quarantine effort.

The format of the paper is as follows. The newmodel, its framework
and main parameters are described in Section 2. Results are presented
in Section 3, while their interpretation is discussed in Section 4. Finally,
conclusions on the advantages and limitations of the models tested
herein are provided in Section 5.

2. Materials and methods

A side-by-side comparison between the proposed lattice-based
model and the IBM by Tonini et al. (2013) was done by establishing a
common ground in order to discount the unwanted effects due to
their different frameworks. Bothmodels were used in two different set-
tings: (i) a homogeneous landscape, where different sets of N termite
colonies were randomly located and considered as sources of invasion,
and (ii) a case-study of an invasive termite, Nasutitermes corniger
(Motschulsky), in Dania Beach, Florida, U.S.A. (Scheffrahn et al., 2002).
The average area occupied at each time step was computed over all
model replications (Monte Carlo estimation) and its value compared
between the two modeling approaches. Moreover, the computational
time was considered to assess the speed of the proposed model against
the established IBM.

2.1. Model design

The lattice-based model proposed herein is spatially-explicit and
stochastic with the purpose of simulating the spatiotemporal spread
of a termite invasion by natural means over a realistic landscape
(e.g. urban environment), starting from a set of initially surveyed colo-
nies. The basic units of themodel are the cells of a gridwith a pre-defined

spatial resolution. Each cell may assume one or more states expressed
by the number of termite colonies contained in it. The temporal scale
chosen for the simulations was discrete with one time step representing
a year. In order to keep themodel comparable to the IBMby Tonini et al.
(2013), the resolution of the spatial grid was set to 100 × 100 m
(=1 ha).

Themain ecological parameters, shown in Table 1, were kept identi-
cal to the IBM. A general description of each one of them follows here.

2.1.1. Colony age at first production of reproductives
The age at which a termite colony starts generating the first crop of

winged reproductives (AFP, hereafter) contributes to the rate of spread
of an invasion. The earlier the first reproductives are generated, the
faster the invasion will proceed.

2.1.2. Pheromone attraction distance
Termite reproductives find potential mates of the opposite sex by

sensing and responding to pheromones after concluding the dispersal
flight (Bordereau and Pasteels, 2011). A new colony begins with a
male–female (i.e. king and queen) couple of unwinged reproductives
starting the nest in a proper substrate, such as soil or wood. The maxi-
mumpheromone attraction distance (PHR, hereafter) affects the chance
that two heterosexual individuals find each other after the dispersal
flight (see Fig. 1). The smaller this maximum distance is set, the smaller
the number of new termite colonies will be.

2.1.3. Colony density
The maximum density of termite colonies over an area (DEN,

hereafter) avoids overpopulation of grid cells in the simulation model.
The higher this parameter is, the higher the chance for a nearby cell to
become infested.

2.1.4. Survival rate
The overall survival rate of reproductives (SURV, hereafter) in a

termite colony determines the number of reproductives that survive a
dispersal flight and can thus potentially mate. Survival is expressed as
an overall rate that considers both predation and injuries that typically
occur as the reproductives start leaving the nest (i.e., preflight), volent
predators in flight (capture by bats and birds), and nonvolent predators
(e.g. ants and herps) as soon as they alight on the ground or on a tree
(i.e., postflight) to search for a mate.

2.1.5. Male prevalence
The prevalence of male reproductives in a colony (MAR, hereafter)

describes the percentage of males among the reproductives and affects
the chance that a heterosexual pair uniteswithin the pheromone attrac-
tion distance after the dispersal flight. That is, the chance decreases the
further the value deviates from 50% of the males.

2.1.6. Amount of reproductives generated by a colony
The number of reproductives generated by a colony (SCR, hereafter)

after reachingmaturity (determined by the aforementionedAFPparam-
eter) increaseswith age. Different scenarios representing the total num-
ber of reproductives by colony age can be chosen. A higher number of
reproductives increases the chance of new colonies being formed.

2.1.7. Dispersal distance
Themean dispersal flight distance (DIST, hereafter) determines how

far the termite reproductives are able to fly, on average, on their own.
The higher this parameter value, the faster the termite spatial expansion
will proceed.

The age of each colony is tracked along with the number of colonies
within each grid cell. Depending on the number of colonies, their age,
and the SURV parameter, each cell can be expressed as the total number
of reproductives available to either stay within it or fly toward neigh-
boring cells. Themain process involved in the spread of termite colonies
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