
Domain-specific languages for ecological modelling

Niels Holst a,⁎, Getachew F. Belete b

a Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
b Department of Geo-information Processing, Twente University, Veenstraat 40, 7511 AS Enschede, Netherlands

a b s t r a c ta r t i c l e i n f o

Article history:
Received 16 February 2015
Accepted 24 February 2015
Available online 28 February 2015

Keywords:
Object-oriented
Component-based
Framework
Software design

The primary concern of an ecologicalmodeller is to construct amodel that ismathematically correct and that cor-
rectly represents the essence of a natural system. When models are published as software, it is moreover in the
hope of capturing an audiencewhowill use and appreciate themodel. For that purpose, themodel softwaremust
be provided with an intuitive, flexible and expressive user interface. A graphical user interface (GUI) is the com-
monly accepted norm but in this reviewwe suggest, that a domain-specific language (DSL) inmany cases would
provide as good an interface as a GUI, or even better.We identified only 13DSLs that have been used in ecological
modelling, revealing a general ignorance of DSLs in the ecologicalmodelling community.Moreover,most of these
DSLs were not formulated for the ecological modelling domain but for the broader, generic modelling domain.
We discuss how DSLs could possibly fill out a vacant niche in the dominant paradigm for ecological modelling,
which is modular, object-oriented and often component-based. We conclude that ecological modelling would
benefit from a wider appreciation of DSL methodology. Especially, there is a scope for new DSLs operating in
the rich concepts of ecology, rather than in the bland concepts of modelling generics.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction . 26
2. Earlier reviews . 27
3. Model building blocks . 27
4. The DSL niche. 28
5. DSL applications in ecological modelling . 29
6. Discussion . 30
Acknowledgements . 32
Appendix. 32
References. 37

1. Introduction

Ecological modellers have applied a variety of tools for model
construction: general programming languages, e.g., Fortran, C++ and
Java; mathematical software, e.g. Matlab (MathWorks, Natick, MA,
USA) and R (R Development Core Team, 2014); and dedicated model-
ling software, e.g. STELLA (ISEE Systems, Lebanon, NH, USA) and Simile
(Muetzelfeldt and Massheder, 2003). However, none of these tools
constitute a domain-specific language (DSL). A DSL is a computer pro-
gramming language of limited expressiveness focused at a particular
problem domain (Fowler, 2011; Harvey, 2005). Thus an ecological
model programmed in a DSL makes an effectively communicated state-
ment about the ecological rationale and function of the model. Because

of its sharp focus, a DSL does not provide the numerous capabilities of a
general-purpose programming language. It just supports the minimum
of features needed to support its domain. An appropriate DSL will facil-
itate quick and effective software development, yielding programs that
are easy to understand and maintain. DSLs enable solutions to be
expressed in the dialect and at the level of abstraction of the problem
domain. Some DSLs might even be used by non-programmers
(van Deursen et al., 2000).

New programming techniques are often taken up rather slowly,
both by ecological modellers and by natural scientists in general
(Derry, 1998; Merali, 2010). It is our hypothesis that ecological
modellers, so far, have largely been unaware of DSL methodology. As
an example, many readers proficient in R have already used DSLs un-
knowingly: the R packages ggplot2 and plyr are both DSLs (Wickham,
2015); however, neither is for ecological modelling. In this review we
explore the use of DSLs in ecological modelling and discuss how
modellers could benefit from a wider application of DSLs.

Ecological Informatics 27 (2015) 26–38

⁎ Corresponding author. Tel.: +45 22 28 33 40.
E-mail address: niels.holst@agrsci.dk (N. Holst).

http://dx.doi.org/10.1016/j.ecoinf.2015.02.005
1574-9541/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Ecological Informatics

j ourna l homepage: www.e lsev ie r .com/ locate /eco l in f

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2015.02.005&domain=pdf
http://dx.doi.org/10.1016/j.ecoinf.2015.02.005
mailto:niels.holst@agrsci.dk
Journal logo
http://dx.doi.org/10.1016/j.ecoinf.2015.02.005
http://www.sciencedirect.com/science/journal/15749541
www.elsevier.com/locate/ecolinf

The choice of a modelling tool is naturally determined by habit. If a
modeller has earlier experience with software for data analysis, it is
convenient to use the same tool for rapid prototyping or even for the
full implementation of a model. This may be the background for models
developed in, for example, Matlab, R or spread sheets. A modeller who
is also a teacher of modelling will likely be acquainted with graphic
modelling tools, which give students a gentle entry to modelling. This re-
sults in models implemented in general modelling tools, such as STELLA.
It is a matter of debate whether such graphical modelling tools are better
suited for prototyping (Villa, 2001) than for seriousmodelling (Constanza
and Voinov, 2003). Some modelling languages appear as general pro-
gramming languages with simulation-specific features added. We find
these languages too unconstrained to qualify as DSLs, admitting that the
distinction is not clear-cut (cf. Fowler, 2011). Thus we have excluded
DEVS (Zeigler, 1987), a successful, object-oriented language for discrete-
event simulationmodels, and NetLogo (Tisue andWilensky, 2004), a suc-
cessful tool for individual-based modelling, from the review.

2. Earlier reviews

It is a long-standing goal to produce code that is flexible, modular
and open for re-use, both in software engineering in general (Martin,
2009) and in ecological modelling in particular (Silvert, 1993). How to
achieve this goal in ecological modelling has been the topic of several
earlier reviews. Thus, Liu and Ashton (1995) and Peng (2000) reviewed
the history of forestmodelling, notinghow the general evolution of soft-
ware from the 1960s to the 1990swas expressed in the implementation
and design of forest models. At first, models were programmed in pro-
cedural languages (e.g., Fortran, C) and were not designed for sharing
or re-use. Then object-oriented languages (e.g., C++, Java) took over,
and code re-usability, modularity and other aspects of ‘clean code’
(summarised by Martin, 2009) gained priority. Models also became
increasingly user-friendly, as it became easier to develop dedicated
graphical user interfaces (GUIs).

The ambition of developing a model, composed of re-usable building
blocks, easily grows into the ambition of creating, not just anothermodel,
but a whole modelling tool for the domain in question, for example, for-
estry or hydrology. Argent (2004) lists the desired features of such a
modelling tool; it should include a library of ready-to-use components,
a development platform to construct new components from provided
templates, a canvas on which to construct models from components,
and a model execution environment. The canvas was envisaged as a
GUI with drag-and-drop of model components. Argent (2004) did not
mention DSLs as an alternative to the graphical canvas. Patrick Smith
et al. (2005) displayed a similar bias towards graphical modelling tools;
they consideredmodelling styles on a gradient fromcode-based to visual,
ranging them from ‘flexible and efficient’ to ‘user-friendly’. A DSL, possi-
bly both code-based and user-friendly, was not considered.

To assess the user-friendliness of a modelling tool, or to develop a
modelling tool with the aim of user-friendliness, the nature of the user
group must be taken into account. The tool may be purely generic,
targeting the modelling domain as such, or it may be focused on the
domain forwhichmodelswill be created. The distinction is important be-
cause the concepts of the tool shouldmatch the expertise of the users, ei-
ther in the modelling domain or the applied domain (Harvey, 2005). An
advantage of tools, focused at the applied domain, is that they make it
easier and safer to construct models, because the components operate
in the terms of the domain.When themeaning of components is obvious
to theuser, the components aremore likely to be combined in ameaning-
ful way (Adam et al., 2012; van Evert et al., 2005). Harvey (2005) saw
benefits in using DSLs both in the modelling and applied domains, as
long as they are not conflated. A well-designed DSL will by definition ad-
dress a certain domain and serve a certain user group well.

In a practical comparison of modelling tools, Argent et al. (2006) set
out to construct a spatially-explicit model of soil degradation using
three different tools. Interestingly, they did not succeed in producing

equivalent models. From this we conclude, that the choice of modelling
tool is important for the resultingmodel, not only in formbut in essence.
There will be a limit to what a tool can conveniently express. The
expressiveness of a modelling tool, DSL-based or not, depends on the
nature of the building blocks that it supports. Thiswewill consider next.

3. Model building blocks

Object-oriented design (OOD) design has been the dominant
paradigm in ecological modelling since the 1990s, when Silvert's
(1993) introductory paper set the milestone. Both Silvert (1993) and
Reynolds and Acock (1997) argued that models should be constructed
from modular, generic building blocks facilitating re-use. In OOD the
building blocks are objects. To enable free combination of objects, they
must match at the seams (have a common interface) and their binding
must be loose, i.e. the Lego (tm) principle (Patrick Smith et al., 2005).
Modern OOD offers techniques that allow both ‘early’ and ‘late’ binding
of objects (through ‘dependency injection’, see Seemann, 2012). Thus,
in a modelling context, one can imagine building blocks that only a
modeller proficient in programming could compose to a working
model (composition by coding, ‘early binding’), or building blocks that
a modeller could compose in a less demanding fashion, maybe with a
visual tool or a DSL (composition by configuration, ‘late binding’).

Any OOD of some complexity will usually be arranged in a frame-
work: ‘A framework is a set of cooperating classes that makes up a reus-
able design for a specific class of software’ (Gamma et al., 1995). In OOD
any object belongs to a certain class which defines its functionality. A
framework is organised as a hierarchy of classes with the most generic
base class at the root. Modellers following the advice of Reynolds and
Acock (1997) will have a root base class named BuildingBlock or some-
thing similar. In literature we found, for example, BasicObject (Larkin
et al., 1988), Population (Silvert, 1993), ModelComponent (Baveco and
Smeulders, 1994), SimulationObject (Sequeira et al., 1997), Model
(Rahman et al., 2003), ILinkableComponent (Gijsbers and Gregersen,
2005) and Component (Holst, 2013; Moore et al., 2007).

Some differences in name-giving reflect the implementation
language. Thus ILinkableComponent is an ‘interface class’, a type which
is available in C# but not in C++, in which the same design is imple-
mented as an ‘abstract class’ (e.g., Component). These base class names
all reveal an intention of a highly generic modelling framework, except
for Populationwhich limits the scope to population dynamics.

A base class calledModel indicates that anyModel object is capable of
running a simulation on its own, which indeed is the case for the Model
objects of Rahman et al. (2003). Objects that can run as independent
pieces of code have been called ‘modules’ (Jones et al., 2001) or
‘components’ (Papajorgji et al., 2004). We will use the term ‘module’.
Technically, a module can be an executable file or a dynamic link library,
which in the right operating environment can be executed. Inter-module
communication (maybe through ‘services’, see Papajorgji et al., 2004)
then allows the composition of more complex models. Jones et al.
(2001) and He et al. (2002) both advocated the use of modules, as they
can communicate with each other through predefined interfaces to en-
able the joint action ofmodels residing on different computing platforms.
The Common Component Architecture (CCA, 2014) forms the basis for
many model integration tools (see Peckham et al., 2013), in which the
building blocks consist of whole, working models of various origin.

Whethermodel building blocks are supplied as a framework of classes
or as a library of modules, a specific model is constructed by combining
and configuring chosen blocks. Commonly, the design allows super-
blocks to be combined from other blocks. The new super-block again
can function as a block (a ‘composite pattern’, see Gamma et al., 1995).
As an example, a framework providing the classes Rotation, Crop and
Organ can be used to construct a model with an object wheat of class
Crop, which has inside the objects root, stem, leaf and ear all of class
Organ. With a similar objectmaize of the Crop class, a conventional object
of class Rotation could hold the objectswheat andmaize. In the context of

27N. Holst, G.F. Belete / Ecological Informatics 27 (2015) 26–38

Download English Version:

https://daneshyari.com/en/article/6295937

Download Persian Version:

https://daneshyari.com/article/6295937

Daneshyari.com

https://daneshyari.com/en/article/6295937
https://daneshyari.com/article/6295937
https://daneshyari.com

