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a  b  s  t  r  a  c  t

Bayesian  statistical  methods  are  being  used  increasingly  in  crime  research  because  they  overcome  data
quality problems  that  arise  due  to the  covert  nature  of  crime,  but the use  of  such methods  is still  in
its  infancy  in  the  field  of wildlife  poaching—a  specific  form  of  crime.  We  analyzed  poaching  risk  for
African  elephant  (Loxodonta  africana)  by comparing  spatial  and  non-spatial  Bayesian  models.  Reports
on  elephant  poaching  in  the Tsavo  ecosystem  were  obtained  for 2002–2012  from  the  Kenya  Wildlife
Service.  The  ecosystem  was  divided  into  34 spatial  units  for which  poaching  data  were  aggregated  and
served  as the  base units  for  analysis.  Spatial  and  non-spatial  Bayesian  models  were  fed  with  expert
knowledge  obtained  through  survey  responses  from  30 experts.  The  predictive  accuracy  of  both  models
was  assessed  using  the Deviance  Information  Criterion  (DIC).  Our  results  indicated  that  spatial  Bayesian
modeling  improved  the  model  fit  for  mapping  elephant  poaching  risk  compared  to  using non-spatial
Bayesian  models  (DIC  value  of  193.05  vs  199.03).  The  results  further  showed  that  the  seasonal  timing  of
elephant  poaching  (i.e.,  in dry and  wet  seasons),  density  of waterholes,  livestock  density  and  elephant
population  density  were  factors significantly  influencing  the  spatial  patterns  of  elephant  poaching  risk  in
the Tsavo  ecosystem  for both  models.  Although  there  were  similarities  in  the high  risk  areas  for  elephant
poaching  recognized  in  both  models,  risk probability  values  per  spatial  unit  could  differ.  Furthermore,
spatial  Bayesian  modeling  also  identified  areas of high  poaching  risk  that were  not  predicted  by the
non-spatial  model.  These  findings  provide  vital  information  for  identifying  priority  areas  for  combating
elephant  poaching  and for informing  conservation  management  decisions.  The  model  we present  here
can  be  applied  to poaching  data  for other  threatened  species.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Widespread illegal hunting and the bush meat trade occur more
frequently and with greater impact on wildlife populations in the
Southern and Eastern savannas of Africa than previously thought
(Lindsey et al., 2012). For example, in 2011 alone, about 40,000
elephants were poached for their ivory in Africa—equivalent to a
species loss of about 3% (Wittemyer et al., 2014). A better under-
standing of where and when poaching is likely to occur would
enable more effective law enforcement and possibly decrease the
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decline of wildlife due to poaching (Critchlow et al., 2015). Given
the covert nature of poaching (Burn et al., 2011) that makes it
difficult to record detailed spatial and temporal information on
all poaching events, methods are needed that can deal with data
scarcity (Gelman and Price, 1999). Not accounting for such scarcity
can lead to unstable estimations of poaching patterns (Bernardinelli
et al., 1995; Congdon, 2000).

With the ability to incorporate expert knowledge to help
inform estimates for poorly sampled areas, Bayesian methods are
becoming an increasingly common tool for ecological and disease
mapping (Gelman and Price, 1999). In Bayesian statistical methods,
crime data is regarded as a fixed quantity, whereas model parame-
ters are considered to be random quantities when the measurement
uncertainty is determined. Bayes’ theorem combines information
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contained in the data (recorded crime) with prior knowledge to
obtain posterior probabilities of crime risk, including risks for
those areas that have a crime incidence count of zero (Law and
Chan, 2012). The advent of recently developed Bayesian statisti-
cal approaches enables associations between crime occurrence and
potential risk factors to be analyzed (Law and Chan, 2012; Law and
Haining, 2004; Law et al., 2006; Law and Quick, 2013). Although
in some situations non-spatial regression models can be carefully
implemented to examine such associations (MacNab, 2004), these
methods are limited in their ability to handle spatial data in which
unmeasured confounders and spatial autocorrelation are evident
(Einhorn et al., 1977; MacNab, 2004).

Crime research is increasingly using spatial methods because
geocoded crime data and crime-related spatial data are becoming
more available, and spatial methods for analyzing crime data at
the local level are being developed (Law and Chan, 2012). Spatial
analysis at the local level typically takes the form of exploratory
spatial analysis such as cluster detection (e.g., hot spot identifica-
tion) (Rashidi et al., 2015), or confirmatory spatial regression (e.g.,
risk factor identification) (Law and Quick, 2013).

The spatial association between crime occurrence and potential
risk factors has traditionally been modeled using a frequentist (clas-
sical) statistical approach in the form of logistic regression (Haines
et al., 2012; Nielsen et al., 2004). However, such an approach does
not satisfactorily account for local risk factors (i.e., existing in one
unit but not in neighboring ones) that remain unknown and are
not captured in the model (Law and Chan, 2012). As a result, spatial
autocorrelation remains a problem in traditional approaches even
if the covariates are adjusted for it (Law and Chan, 2012). More-
over, developing accurate models requires large datasets; this can
be a problem in crime research where observational data are scarce,
costly to obtain, or subject to design and quality concerns.

Bayesian statistics have been used to fit spatial models in sev-
eral crime studies (Haining and Law, 2007; Law and Chan, 2012;
Law and Haining, 2004; Law et al., 2006; Law and Quick, 2013;
Porter and Brown, 2007). However, to our knowledge, few stud-
ies have utilized spatial Bayesian methods to explore relationships
between wildlife poaching (a specific form of crime) and potential
risk factors. One example is Burn et al. (2011), who studied global
trends and factors associated with the illegal killing of elephants in
Africa and Asia between 2002 and 2009. They used a Bayesian hier-
archical modeling approach to estimate the trend and the effects
of site- and country-level factors associated with the poaching. At
a country level, key determinants for elephant poaching were poor
governance and low levels of human development; whereas at a
site level they were low human population density and forest cover.
Although Burn et al. (2011) explored spatial Bayesian modeling
in their analysis, they did not incorporate any informative prior
knowledge (expert knowledge) in the model.

Expert knowledge can provide information about model param-
eters and help characterize uncertainty in models, and it can be
useful when data are limited or are not available (Kuhnert, 2011).
For example, Murray et al. (2009) used expert judgments to fill
information gaps related with species occupancy in unreachable
sites. Expert knowledge has also been used to assess the impacts of
grazing levels on bird density in woodland habitats (Martin et al.,
2005). Furthermore, expert knowledge was used to create Bayesian
networks for criminal profiling from limited data (Baumgartner
et al., 2008).

Bayesian methods can incorporate expert knowledge through
priors (prior knowledge), using probability distributions repre-
senting what is known about the effect of the factor on what is
being modeled (Gelman et al., 2014; Kuhnert et al., 2010; Stigler,
1986). The priors reflect the knowledge available on model param-
eters before observing the current data (Schoot et al., 2014; Stigler,
1986). Non-informative priors can be specified if one does not

want to impose any prior knowledge on a model. The use of non-
informative priors is referred to as objective Bayesian statistics
since only the data determine the posterior results (Clarke, 1996;
Press, 2009; Schoot et al., 2014). In contrast, informative priors
convey information on prior preference for certain parameter val-
ues. Methods using informative priors are referred to as subjective
Bayesian statistics (Akaike, 1977; Clarke, 1996; De Finetti et al.,
1990; Press, 2009; Schoot et al., 2014). Subjective priors are benefi-
cial because findings from previous research and expert knowledge
can be incorporated into the analyses (Akaike, 1977; Clarke, 1996;
Press, 2009; Schoot et al., 2014). For example, after several stud-
ies on the relationship between elephant poaching and risk factors,
we may  be able to provide a fairly accurate prior distribution of
the parameters that measure this relationship. Prior information
can also be obtained from expert knowledge gained from exten-
sive experience. Different points of view might represent different
priors for parameters, however, it has been shown that Bayesian
expert systems are robust with respect to the absolute difference
in priors (McCarthy, 2007). For example, Crome et al. (1996) used
Bayesian methods to study effects of logging on mammals and
birds. They were mainly interested in investigating real differences
of opinion, which were elicited from experts. Differences of opinion
were represented in the different priors for the impact of logging on
mammals and birds. They revealed that these differences of opinion
could reach consensus for various species (McCarthy, 2007).

In a previous study, we analyzed elephant poaching hotspots
from poaching incidence data using clustering techniques (Rashidi
et al., 2015). However, we  did not incorporate any knowledge about
risk factors nor did we account for the possibility of missing poach-
ing data in the records. In the present study, we propose to use
expert knowledge as prior information on risk factors.

A key feature of the spatial Bayesian modeling approach is the
specification of the spatial random effect term to the Bayesian
non-spatial model; this term can account for unidentified or unex-
plained sources of spatial autocorrelation. The spatial random effect
term includes a spatially unstructured random variable and a spa-
tially structured variable. Spatially unstructured random variables
ignore the geographical location of the analysis units, whereas
spatially structured random variables assume that geographically
proximate spatial units tend to have similar risks (Law and Chan,
2012). Another advantage of the Bayesian spatial model is its capa-
bility to account for missing data, where, due to data limitations,
the analyst is concerned about the effects of important covariates
that are missing (Law and Haining, 2004; Law and Quick, 2013).

Our study aimed to address four questions: (1) Is the Bayesian
spatial model more effective for mapping elephant poaching risk
than the non-spatial model? (2) What are the key factors influenc-
ing elephant poaching risk as determined by Bayesian spatial and
non-spatial models? (3) Where are the high risk areas for elephant
poaching in the Tsavo ecosystem based on both models? (4) Where
are areas of high risk unexplained by the covariates?

2. Materials and methods

2.1. Study area

The Tsavo ecosystem consists of an area of about 38,128 km2 in
south-east Kenya (Fig. 1). It lies between 2 and 4◦S, and 37.5–39.5◦E.
The Tsavo ecosystem has the highest population of elephants in
Kenya, and also the highest number of reported elephant poaching
incidents (Maingi et al., 2012; Rashidi et al., 2015). The anti-
poaching activities in the Tsavo ecosystem face challenges of
insufficient human and financial resources, and the extensive area
to be covered (Maingi et al., 2012; Rashidi et al., 2015). Several rivers
cross the ecosystem, including the Tsavo, Tiva, Galana, Athirivers,
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