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a  b  s  t  r  a  c  t

Invasive  species,  which  can  be  responsible  for  severe  economic  and environmental  damages,  must  often
be managed  over  a wide  area  with  limited  resources,  and  the  optimal  allocation  of  effort  in  space  and  time
can  be  challenging.  If the  spatial  range  of  the invasive  species  is  large,  control  actions  might  be applied  only
on  some  parcels  of land,  for example  because  of  property  type, accessibility,  or  limited  human  resources.
Selecting  the  locations  for  control  is critical  and can  significantly  impact  management  efficiency.  To
help  make  decisions  concerning  the  spatial  allocation  of  control  actions,  we  propose  a simulation  based
approach,  where  the  spatial  distribution  of the  invader  is  approximated  by a reaction–diffusion  model.  We
extend  the  classic  Fisher  equation  to  incorporate  the  effect  of  control  both  in  the  diffusion  and  local  growth
of  the  invader.  The  modified  reaction–diffusion  model  that  we  propose  accounts  for  the  effect  of  control,
not  only  on  the  controlled  locations,  but  on  neighboring  locations,  which  are  based  on the  theoretical
speed  of the  invasion  front.  Based  on simulated  examples,  we show  the superiority  of  our  model  compared
to  the state-of-the-art  approach.  We  illustrate  the  use  of  this  model  for the  management  of  Burmese
pythons  in  the Everglades  (Florida,  USA).  Thanks  to  the  generality  of the  modified  reaction–diffusion
model, this  framework  is  potentially  suitable  for  a wide  class  of  management  problems  and  provides  a
tool  for  managers  to predict  the  effects  of  different  management  strategies.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Invasive species (IS) are responsible for severe ecological dam-
ages and economic losses (Olson, 2006; Dehnen-Schmutz et al.,
2007; Pysek and Richardson, 2010), and their management (e.g.
control and/or eradication) is a challenging problem due to uncer-
tainty about the species biological characteristics and limited
resources with which to undertake control. Although the most
cost-effective method for minimizing damage is one that prevents
the arrival of non-indigenous species (Lodge et al., 2006; Keller
et al., 2007), the implementation of such a strategy is not obvi-
ous when the potential invasiveness of a species is unknown and
the species has commercial value (Keller and Springborn, 2013).
As a consequence, the management of IS often starts long after
their introduction, when ecological damages are visible and the
species is already well established. In such a situation, the area
occupied by the species can be large, and managers have to act with
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limited resources in order to slow the invasion and/or eradicate
the IS. Managers typically face the decision of where, when, how
much and/or how often control has to be implemented. The opti-
mal  management of IS, reviewed in Epanchin-Niell and Hastings
(2010), is discussed in a growing number of articles, in which bio-
logical models are coupled with efficient optimization routines
(Mehta et al., 2007; Bogich et al., 2008; Hauser et al., 2009; Carrasco
et al., 2010; Giljohann et al., 2011). But in many practical situa-
tions, the decision problem is spatially explicit by nature (Meier
et al., 2014). Therefore, the problem is to decide where in the
entire management area to allocate control effort. As the complex-
ity of this optimization problem grows with the number of control
units in the management area, finding the optimal management
strategy among all possible alternatives becomes computation-
ally intractable. Another important issue arises when there must
be an accounting of the temporal dynamics of the invader pop-
ulation. Then, managers have to optimize their choices, not only
for the current time step, but for possible scenarios in the future.
One approach consists in using heuristic methods to find a sub-
optimal management strategy (Schapaugh and Tyre, 2012; Nicol
and Chadès, 2011). Although these methods should be favored first,
heuristic methods can be hard to use in the most general case
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because of their computational complexity. And in some cases, even
if the management area remains large, the areas where control can
be implemented can be small. In this case, the challenge is not so
much to compute the optimal control strategy, but to predict and
compare the efficiency of the different options available to the man-
ager. Then a natural approach is simulation based (Higgins et al.,
2000; Grevstad, 2005; Provencher et al., 2007; Frid et al., 2013),
which requires a dynamic, spatially explicit model of the invader
population that takes into account the effects of control.

Reaction–diffusion (RD) models are general, spatially explicit
models that use a partial differential equation to describe changes
in population density over time and space. Although some limita-
tions of these models are known (Svenning et al., 2014), they have
been widely applied in ecology (Holmes et al., 1994; Cantrell and
Cosner, 1996, 2003; Shigesada and Kawasaki, 1997; Bogich et al.,
2008; Kaiser and Burnett, 2010; Acevedo et al., 2012; Leroux et al.,
2013) and provide a good basis to describe the pattern of diffusion
(Andow et al., 1990; Hastings et al., 2005). The basis of this model is
described by Fisher’s equation with logistic growth (Fisher, 1937;
Skellam, 1951):
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where n is the species density at a given location (i.e. number of
individuals per square kilometer), D is the diffusion coefficient (i.e.
the rate at which individuals disperse), �  is the intrinsic rate of
growth (i.e. the birth rate minus the death rate) and K is the so-
called carrying capacity (i.e. the maximal density per location). The
left term is responsible for the spread or diffusion of the species, and
the right term for local population growth (here a logistic growth
function). Classic RD models make the assumption that the invader
is introduced at a given point in space and then diffuses in a homo-
geneous landscape in every direction with the same probability,
such that movement can be characterized as a random walk. In
an infinitely large and suitable landscape, the pattern of invasion is
described by a growing circle centered on the point of first introduc-
tion. Although simple, this colonization pattern is quite general and
can be used to model invasions in practice with reasonable compu-
tational complexity. But to be used to explore the control of IS, the
Fisher equation (1) has to be modified in a way that accounts for
the effect of control, not only on the local growth of the population,
but on the diffusion process as well.

To account for the effect of control on population growth, a
useful approach is based on the Schaefer model (Schaefer, 1957),
extensively used in the field of fisheries economics. See for exam-
ple (Clark, 1990) for a detailed analysis of the Schaefer model. This
model is defined without any spatial component: if  ̌ is the con-
trol mortality (or fishing mortality or harvest rate) of the control
method (or any removal method), the change in the population
density is defined as follows: ∂(n)/∂t = �n(1 − n/K) − ˇn. Several
authors (Oruganti et al., 2002; Neubert, 2003; Kurata and Shi, 2008)
extended this last equation for two dimensions by adding the dif-
fusion term, as it appears in the original Fisher’s equation:
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This modification is known as the Constant–Effort Harvesting
model (CEH). For example, Neubert (2003) used this model to dis-
cuss the optimal locations of marine reserves, as well as the optimal
level of harvesting. As one can see, the CEH model makes the
assumption that the diffusion term is not affected by control (i.e. the
spread term is unchanged), or equivalently that individuals cannot

be removed while dispersing. For invasive species this assumption
is debatable, as far as they are generally controlled regularly over
the year, thus both in-situ and during dispersal.

We propose to modify the diffusion term to explicitly account
for the fact that individuals can be removed when they are diffus-
ing. This results in a CEH model with an additional linear control
mortality, where the density at any point is explicitly affected by
the probability that immigrants have been removed.

We first compared the prediction of the CEH model and the mod-
ified RD model using a simulated data set. We  then illustrated the
use of this model for management of the Burmese python (Python
molurus bivitattus)  in the Everglades, Florida.

2. Materials and methods

2.1. Accounting for the effect of control actions

This section present the modified CEH model with a total linear
removal rate. A complete proof of this new model is available in
Appendix S1.

We assume that J control actions are available to the manager.
The control actions are associated with the yearly control mor-
tality ˛T1 , . . .,  ˛TJ

and weights rT1 (x), . . .,  rTJ
(x). And let’s denote

CTj
⊂ R

2, j = 1. . .J, the spatial domain where control action Tj is
applied. The different control actions can be for example, phys-
ical, chemical or biological. Then, the yearly control mortality is
the added mortality created by the control action over a year
(i.e. a reproduction cycle). Without loss of generality, we  suppose
that any point in space can be controlled by at most one control
action, which implies that ∩J

j=1CTj
= ∅. In practice, a control action

Tj can result from different control actions and the control mor-
tality has to be computed accordingly. But in the model, Tj always
appears as a single control action. As we consider the spatial prob-
lem of management, x denotes a spatial coordinate: x = (x, y) ∈
� ⊆ R

2, where � is the entire spatial domain or management
area. Then x ∈ CTj

means that location x is controlled with control
action Tj.

Formally, rTj
(x) is the probability that an immigrant to loca-

tion x crossed an area controlled by action Tj before arriving in x.
And thus, ˛Tj

× rTj
(x) is the probability that the individual will be

removed before reaching location x. In practice, obtaining an ana-
lytic value of rTj

(x) is not straightforward and an approximation is
needed. We  propose an intuitive way to compute rTj

(x) in the next
section.

Finally, let ˇ(x) denote the yearly control mortality of the control
action applied at location x. If x is not controlled, then ˇ(x) = 0 and
if x is controlled with action Tj, ˇ(x) = ˛Tj

. In such a situation the
population dynamic at location x is described as follows:
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This modified RD model corresponds to the CEH model with an
additional linear control mortality term and will be further denoted
the LCM model. The only difference from the CEH model is the addi-
tional term −n(x, t)

∑J
j=1˛Tj

rTj
(x), which appears in the reaction

term. As expected, not only the growth of the population is influ-
enced by the control method at this location but also by control
in its neighborhood, as control of dispersing individuals naturally
decreases the number of individuals that are immigrating. One can
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