
Ecological Modelling 321 (2016) 1–9

Contents lists available at ScienceDirect

Ecological  Modelling

journa l h om epa ge: www.elsev ier .com/ locate /eco lmodel

Incorporating  deep  uncertainty  into  the  elementary  effects  method
for  robust  global  sensitivity  analysis

Lei  Gao ∗,  Brett  A.  Bryan
CSIRO Waite Campus, Urrbrae 5064, SA, Australia

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 23 May  2015
Received in revised form 1 October 2015
Accepted 19 October 2015
Available online 4 December 2015

Keywords:
eFAST
Land use
Scenarios
Futures
Global sensitivity analysis
Morris’ elementary effects

a  b  s  t  r  a  c  t

Internally-consistent  scenarios  are increasingly  used  in  social–ecological  systems  modelling  to  explore
how  a  complex  system  might  be influenced  by deeply  uncertain  future  conditions  such as  climate,  pop-
ulation,  and  demand  and  supply  of  resources  and energy.  The  presence  of  deep  uncertainty  requires
model  diagnostic  techniques  such  as  global  sensitivity  analysis  to provide  reliable  diagnostic  insights
that  are  robust  to highly  uncertain  future  conditions.  We  extended  the elementary  effects  method  of
Morris,  which  is  widely  used  to screen  important  model  input  factors  at low  computational  cost,  by
incorporating  deep  uncertainty  via  the use  of  scenarios,  and  evaluated  its potential  as  a  robust  global
sensitivity  analysis  approach.  We  applied  this  robust  elementary  effects  (rEE)  method  to  the highly-
parameterised  Australian  continental  Land  Use Trade-Offs  (LUTO)  model—a  complex,  non-linear  model
with strong  interactions  between  parameters.  We  compared  rEE sensitivity  indicators  with robust  global
sensitivity  analysis  (RGSA)  indicators  based  on  the variance-based  eFAST  method  that  imposes  relatively
high  computational  demand.  We  found  that the  rEE  method  provided  a good  approximation  of  the main
effects  and  was  effective  in  screening  the  most  influential  model  parameters  under  deep  uncertainty  at a
greatly  reduced  computational  cost.  However,  the  rEE method  was  not  able  to match  the  accuracy  of  the
eFAST-based  method  in  identifying  the  most  influential  parameters  in the  complex  LUTO  model  based
on  their  total  effects.  We  conclude  that the rEE  method  is  well-suited  for screening  complex  models,  and
possibly  for  efficient  RGSA  of  models  with  weak  interaction  effects,  but not  for  RGSA  of  complex  models.
Despite  its  limitations,  rEE  is  a  valuable  addition  to  the robust  global  sensitivity  analysis  toolbox,  helping
to  provide  insights  into  model  performance  under  deep  uncertainty.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To provide a scientific basis for decision-making,
social–ecological modelling is used more than ever to provide
future projections of natural resource use, economic activities,
environmental impacts, and their interplay at local to global scales
(Wise et al., 2009; Nelson et al., 2010; Bateman et al., 2013; Liu
et al., 2015). However, modelling and model diagnostics tech-
niques, such as global sensitivity analyses (GSA), are challenged
by the presence of deep uncertainty, where probabilities of the
occurrence of future events are unknown, the uncertainty is
uncontrollable, and predictions based on past data are unreliable
(Knight, 1921; Wintle et al., 2010; Cox, 2012; McInerney et al.,
2012). A common and effective way of coping with deep uncer-
tainty is to characterise a range of scenarios, each of which is a
structured account of a plausible future (Peterson et al., 2003;
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Wilkinson and Kupers, 2013; Kirby et al., 2014; Hatfield-Dodds
et al., 2015; Kirby et al., 2015). Recent influential examples include
the Representative Concentration Pathways (Moss et al., 2010; van
Vuuren et al., 2011) and the Millennium Ecosystem Assessment
(2005). A key characteristic of scenarios is internal consistency.  In
essence, parameter settings for each scenario are logical when
taken together and varying individual parameters risks illogical or
impossible parameter combinations. Scenarios should not include
contradicting assumptions and must be regarded as plausible
stories of the future by experts (van Vuuren et al., 2011).

In modelling complex social–ecological systems, GSA is seen
as an increasingly important component which provides insights
about the mapping of model inputs to model outputs, and major
parametric uncertainty sources (Saltelli et al., 2000). It enables
the quantification of the influence of uncertainty in model input
parameters on the variability of model outputs (Saltelli et al., 2008).
Information provided by GSA enables modellers to verify models
and identify errors, to understand the structure of complex models,
to prioritize influential parameters for data collection and refine-
ment to improve the model accuracy and reduce uncertainty, and
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to identify benign parameters which can be safely ignored. GSA
has been applied to a wide range of ecological and environmental
models including hydrology (e.g., Nossent et al., 2011; Shin et al.,
2013; Gan et al., 2014; Peeters et al., 2014), land use (e.g., Gao
et al., 2015), forestry (e.g., Song et al., 2012, 2013), agriculture (e.g.,
DeJonge et al., 2012; Zhao et al., 2014), and population dynamics
(e.g., Fieberg and Jenkins, 2005). Several methods for GSA have been
proposed including screening (e.g., Morris, 1991), non-parametric
(e.g., Saltelli and Marivoet, 1990), variance-based (e.g., Sobol’, 1993;
Saltelli et al., 2010), density-based (e.g., Liu and Homma, 2009), and
expected-value-of-information-based methods (e.g., Oakley et al.,
2010). Two key outputs from GSA are the main or first-order effects
(variance contribution of an individual parameter to the total model
variance) and the total effects (variance contribution resulting from
the first-order effect of an individual parameter and all its inter-
actions with other parameters). The extended Fourier Amplitude
Sensitivity Test (eFAST) method (Saltelli et al., 1999) is a state-
of-the-art GSA approach which can efficiently calculate both the
main and total effects (Zhao et al., 2014). However, eFAST remains
relatively computationally-intensive compared to the elementary
effects (EE) method (Morris, 1991) which can approximate the total
effects with greatly reduced computational demand (Campolongo
et al., 2007; Herman et al., 2013). It has proven to be among the
most efficient parameter screening methods and has been widely
applied (e.g., Song et al., 2012; Herman et al., 2013; Zhan et al.,
2013).

In broad terms, GSA works by varying individual model inputs
within a specified range of uncertainty in a structured way, running
the model under each parameter combination, and quantifying
the sensitivity of outputs to variation in inputs. However, under
deep uncertainty, varying the attributes of scenarios independently
may  invalidate their internal consistency, risking implausible or
impossible parameter combinations. Gao et al. (2015) found statis-
tically significant differences between scenarios in the influential
and non-influential parameters identified, and in parameter influ-
ence, both in terms of their ranking and in the magnitude of their
total effects. Gao et al. (2015) proposed a robust global sensitiv-
ity analysis (RGSA) approach by employing four decision criteria in
determining a set of sensitivity indicators that are robust to deeply
uncertain futures represented as scenarios. Each criterion was used
to calculate a robust sensitivity indicator based on the sensitivity
indices from the eFAST method under different scenarios. However,
the computational load of the eFAST method limited the utility of
eFAST as a robust GSA as Gao et al. (2015) had to run the model at
a coarse resolution, even using high-performance computing and
parallel programming techniques (Bryan, 2013). For analysing the
sensitivity of large models there is a need to incorporate robustness
into a more computationally-efficient GSA method such as the EE
method.

In this paper, we modified the EE method to perform a robust
elementary effects (rEE) global sensitivity analysis of the Aus-
tralian continental Land Use Trade-Offs (LUTO) model (Bryan
et al., 2014; Connor et al., 2015) across four global scenarios.
The EE method overcomes the limitations of derivative-based
methods (Saltelli et al., 2008) and measures global sensitivity
by sampling throughout p-level parameter space (p is the num-
ber of levels to which each dimension of the parameter space
is divided). We  incorporated internally-consistent scenarios into
the p-level sampling space and evaluated its capability for RGSA.
The effectiveness of the rEE method was assessed by statistically
comparing its robust sensitivity effects with the estimates of Gao
et al. (2015) obtained by applying four decision criteria based on
their eFAST-calculated measures of first-order and total effects.
We discuss the advantages and limitations of rEE as a method
for performing global sensitivity analysis that is robust to deep
uncertainty.

2. The LUTO model

2.1. Brief overview of model and scenarios

The LUTO model provides a comprehensive assessment of
Australia’s future land use and ecosystem services (e.g. food,
carbon, energy, biodiversity, and water) under external drivers
of global change and domestic policy. The details of the LUTO
model are presented by Bryan et al. (2014) and Connor et al.
(2015) and are summarised here. The LUTO model estimates the
potential extent and impacts of land use change at a spatial res-
olution of ∼1.1 km grid cells across the 85.3 million hectares of
Australia’s non-contiguous intensive agricultural land. The LUTO
model incorporates traditional market dynamics into land use
change decision-making and quantifies the impact of global change
on ecosystem services. The model generates spatio-temporal out-
comes at annual time step for the period from 2013 to 2050.
Exogenous parameters are updated with each time step, includ-
ing global prices for carbon and energy, and global demand for
crops and livestock. Then an optimiser embedded in the model allo-
cates land in each spatial cell to one of five categories of alternative
land use: agriculture, carbon plantings, environmental plantings,
biofuels, and bioenergy.

Four global scenarios or global outlooks denoted L1, M3,  M2,
and H3, were defined within CSIRO’s Australian National Outlook
initiative as different combinations of global economic, popula-
tion, greenhouse gas emissions, and climate settings. The outlooks
can be broadly described as combinations of low (L), medium
(M), and high (H) emissions, and low (1), medium (2), high (3)
global population projections (Supplementary Material Table A1).
The outlooks were created via integrated assessment using the
Global Integrated Assessment Model (Newth et al., 2015) and are
internally-consistent pathways to the Representative Concentra-
tion Pathways 2.6 (L1), 4.5 (M2, M3), and 8.5 (H3) (Moss et al., 2010;
van Vuuren et al., 2011). We  refer the reader to Hatfield-Dodds et al.
(2015) and Newth et al. (2015) for detailed scenario specifications.

2.2. Input factors and output variables

We  performed GSA on 50 parameters (excluding fixed ones)
of the LUTO model. The parameters were classified into 9 groups:
scenario, agriculture profit function, reforestation inputs, reforesta-
tion costs, biofuel inputs, biofuel costs, climate impacts, water, and
other (Supplementary material Table B1). Each global outlook was
represented by a time series of each scenario parameter during the
period 2013 to 2050. For parameters with no information avail-
able to determine their ranges, 30% either side of the reference
value was  used as the bounds. The ±30% variation was uniformly
applied to all spatial parameters but ignoring the variation charac-
teristics that may  change non-uniformly over space. Some recent
progress has been made in investigating the effect of spatial param-
eters on sensitivity (Dong et al., 2015) but more effort is required.
A uniform distribution was assigned to each parameter due to
limited information on parameter distributions. 24 output vari-
ables were selected and evaluated (Supplementary material Table
B2), representing the major ecosystem services (agricultural pro-
duction, carbon emissions abatement, biodiversity services, biofuel
and bioenergy production, and water resources) and the area of
each land use.

3. Robust sensitivity analysis methods

The four external scenario inputs were incorporated into the rEE
method to provide a robust global sensitivity analysis, giving a com-
prehensive assessment of the influence of each input parameter
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