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a  b  s  t  r  a  c  t

Applying  biological  versions  of  the  Data  Rate  Theorem  and the  Arrhenius  reaction  rate  relation,  it becomes
clear  that the search-and-response  feedback  of  developmental  selection  associated  with  phenotypic  plas-
ticity requires  a significant  rate  of  metabolic  free  energy.  Too  rapid  change  in  environmental  conditions,
often  coupled  with  decline  in available  sources  of  metabolic  free energy,  leads  to highly  punctuated  local
extinction  events.  The  observed  dynamic  is  likely  to be  that  the  animal  seems  to adapt  to  environmen-
tal  alterations  for a long  time,  but  then,  and  quite  suddenly,  developmental  selection  fails,  leading  to
local  extirpation  of  the  reproducing  population.  Conversely,  mosaicking,  by  imposing  selection  demands
associated  with diversity  in time,  space,  and  mode  – as  in  traditional  and conservation  agricultures  – can
create  energy  barriers  limiting  the evolution  and spread  of  pest  or pathogen  populations.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Snell-Rood (2012) defines developmental selection as a devel-
opmental process that involves the sampling of a range of
phenotypes and feedback from the environment reinforcing high-
performing phenotypes, particularly in the context of rapid
environmental change. This perspective is consistent with, and
much in the style and direction of, that of West-Eberhard (2003).
While developmental selection has clear benefits in the context of
rapidly changing environments, it carries a variety of costs, many
of which express themselves as high metabolic demands across the
life course of an organism.

As Snell-Rood (2012) puts the matter, while developmental
selection may  increase performance of individuals in the local
environment, the process of sampling phenotypes and receiving
environmental feedback comes with costs of time, energy, and risk
of predation. Developmental selection requires energy and mate-
rial in order to physically express a range of different phenotypes.
In the case of behavioral plasticity, there is a material cost in the
form of more neurons and more neural connections required to
sample a range of behaviors. This is significant because neural tis-
sue is some of the most metabolically expensive tissue in the body.
Across other components of organismal development, exploration
should result in energy costs associated with construction and atro-
phying diverse phenotypes. The costs of developmental selection
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should result in major changes in allocation of energy, resulting in
changes to life history strategies.

Snell-Rood (2012) goes on to identify possible subtleties in these
processes. For example, if the population shifts into a novel constant
environment, the costs of developmental selection will select for
loss of plasticity, or genetic assimilation. If environmental variation
remains, there may  be selection to reduce environmental varia-
tion (and subsequently plasticity), for instance through habitat or
resource selection. In other words, animals may  niche-construct
their environment in ways that make it less variable. Niche con-
struction is usually a separate and massive sink for metabolic free
energy.

Here, we first adapt a control theory perspective to the
sampling-and-feedback mechanisms inherent to these constructs,
in particular invoking the Rate Distortion Theorem and the homol-
ogy between information and free energy so elegantly expressed by
Bennett (1988), as summarized by Feynman (2000). It becomes pos-
sible to explore minimal levels of metabolic free energy required
for stability in developmental selection using a biological version
of the recently developed Data Rate Theorem that, after a half-
century of work, formally links information and control theories
(Nair et al., 2007). Environmental demands beyond such limits may
express themselves in punctuated extinction events. Conversely,
systematic reduction in metabolic demand – one form of ecolog-
ical smoothing – may  express itself in punctuated emergence, for
example blooms of pests or pathogens (e.g., Wallace et al., 2014;
Wallace and Wallace, 2014).

A second line of argument adapts the Arrhenius reaction rate
relation: the rate of metabolic free energy supply is taken as a
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temperature analog in driving the biological cognition associated
with developmental selection and phenotypic plasticity. Too slow
an adaptation rate, of course, would lead to extirpation of local
populations under rapidly changing environmental burdens.

Biological regulation, like selective processes in development,
can be viewed as involving the transmission of control signals to
physiological systems at a variety of scales and levels of organiza-
tion (Wallace, 2014; Wallace and Wallace, 2010). Gene expression,
in the context of environmental and developmental signals, is
very much a cognitive process in the sense of Atlan and Cohen
(1998) (Wallace, 2012, 2014; Wallace and Wallace, 2014). That is,
given a fixed ‘instrument’ of the organism’s limited set of genes,
regulatory systems must, at each developmental branch point
(West-Eberhard, 2003) chose to ‘play’ a single possible outcome
out of a much larger set of possible outcomes. Such choice requires
reduction of uncertainty, in a particular formal sense, and this
implies existence of an information source ‘dual’ to the cognitive
process. Again, see Wallace (2012, 2014) and Wallace and Wallace
(2008, 2009, 2010) for more complete explication, elaboration and
application of arguments regarding the cognitive nature of gene
expression.

Several obvious questions arise:

(1) How well is the control signal obeyed?
(2) What is the rate of metabolic free energy (RMFE) necessary to

impose an adequate level of control?
(3) What is the RMFE needed to impose a particular rate of response

to incoming signals?

Answering these questions requires some formal development.

2. A first approach

The Rate Distortion Theorem, described more fully in the Math-
ematical Appendix, states that, for a communication or control
channel, there is a function, R(D), that is the minimum necessary
rate of information transmission that ensures communication does
not exceed an average distortion D, by some appropriate measure.
Thus R(D) defines a minimum necessary channel capacity. Cover
and Thomas (2006) provide details. The rate distortion function has
been calculated for a number of systems, using Lagrange multiplier
or Khun–Tucker optimization methods.

Cover and Thomas (2006, Lemma  13.4.1) show that R(D) is nec-
essarily a decreasing convex function of D: R(D) is always a reverse
J-shaped curve. Convexity is an exceedingly powerful mathemati-
cal condition, and permits deep inference. We  will use the Gaussian
channel as an easily calculated example, but the arguments are
quite general.

For the standard Gaussian channel having white noise with zero
mean and variance �2, using the squared distortion measure (Cover
and Thomas, 2006),

R(D) = 1
2

log

[
�2

D

]
, 0 ≤ D ≤ �2

R(D) = 0, D > �2

(1)

Feynman (2000) argues that there is a deep homology between
information source uncertainty and free energy density. Following
Bennett’s (1988) arguments, he constructs a simple ideal machine
that can turn the information of a message to useful work – a sur-
prisingly elementary result. Thus information should be viewed
as another kind of free energy, and the construction and trans-
mission of information within living things consumes metabolic
free energy, with necessarily massive losses as a consequence of
the second law of thermodynamics. If there are limits on available
metabolic free energy, there will necessarily be limits on the ability

of living things to process information, and, in particular, for essen-
tial regulatory mechanisms to maintain or change the living state.
R(D) can be interpreted as a free energy rate measure.

Let metabolic free energy be available at a rate M.  Let R(D) be the
Rate Distortion Function describing the relation between a critical
regulatory system intent and the real effect on the regulated sys-
tem. To reiterate, this is a channel capacity index. We  assume, in
first approximation, that the rate of metabolic free energy needed
to sustain a biological control channel having a Rate Distortion
Function R(D) is

M ≈ �1R(D) + �2 (2)

where the �1 may  be quite large as a consequence of Second
Law losses in the translation of metabolic energy into information
energy.

The Mathematical Appendix uses a classic Black–Scholes cost
analysis to derive this result as the outcome of an exactly solvable
approximate model, with the serious limitations that implies (e.g.,
Pielou, 1977, pp. 107–110).

Van den Broeck et al. (1994, 1997), Horsthemeke and Lefever
(2006), and many others, have noted that the relation of phase tran-
sition to driving parameters in physical systems can be obtained
by using the rich stability criteria of stochastic differential equa-
tions. We  apply similar arguments, deriving a ‘biological’ form of
the important Data Rate Theorem relating control and information
theories that is described in more detail below.

The motivation derives from the observation that a Gaussian
channel with white noise variance �2 and zero mean has the Rate
Distortion Function described by Eq. (1). Define a ‘Rate Distortion
entropy’ as the Legendre transform

SR = R(D) − DdR(D)
dD

= 1
2

log

[
�2

D

]
+ 1

2
(3)

Then the simplest ‘nonequilibrium Onsager equation’ describing
system dynamics (de Groot and Mazur, 1984) is

dD

dt
= −�dSR

dD
= �

2D
(4)

Here, t is the time and � is a diffusion coefficient. This has as the
simplest solution D(t) =

√
�t, precisely the classic result for the

ordinary diffusion equation. Such correspondence reduction allows
argument upward in both scale and complexity. That is, regulation
does not involve a diffusive drift of some average distortion. Quite
the contrary.

Taking M again as the rate of available metabolic free energy, a
plausible model – in the presence of white system noise having vari-
ance ˇ2 in addition to the environmental channel noise variance �2

– is the stochastic differential equation

dDt =
(

�

2Dt
− F(M)

)
dt + ˇ2

2
DtdWt (5)

dWt represents white noise and F(M) ≥ 0 is a monotonically
increasing function that will be explicitly derived in subsequent
calculations.

Eq. (5) has the nonequilibrium steady state (nss) expectation

Dnss = �

2F(M)
(6)

where Dnss is the nonequilibrium steady state value of the average
distortion.

Next, applying the Ito chain rule to Eq. (5) (Protter, 1990;
Khasminskii, 2012), it becomes possible to calculate the variance
in the distortion as E(D2

t ) − (E(Dt))
2.
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