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a  b  s  t  r  a  c  t

After  a short  review  of the  contemporary  stability  indicators  recently  used  to assess  behavior  of the  empir-
ical  food  webs,  we  discuss  the corresponding  amplification  and  timescales  of transient  instability.  Then,  a
novel  robust  measure  that  incorporates  uncertainty  level  of empirical  data  and  amplification–timescale
frame  in  the  stability  analysis  is introduced.  As  a result,  more  realistic  notion  of stability  is achieved,  and
its  usefulness  is advocated.  Finally,  an efficient  numerical  algorithm  for its  computation  is  constructed  to
allow  possible  applications  to  high  resolution  food  webs  in  the future.  New stability  indicator  is  computed
for the soil  food  web  and  it is compared  with  the  ones  reported  in  the  literature.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

One of the contemporary paradigms developed to understand
interplay between stability and complexity of the soil ecosystem
is a mechanistic model of an energetic food web which con-
sists of living organic matter (plants, animals, bacteria, fungi, etc.)
and non-living organic matter (detritus with allochthonous and
autochthonous source), see Moore and de Ruiter (2012). Based
on the predator-prey coupling between functional groups, this
dynamical systems approach provided important insights in Neutel
et al. (2002, 2007). However, as we show in this paper, the meth-
ods used to assess stability have certain drawbacks and can be
misleading. The main issue occurring in the studies we  review is
that the computed measures of stability correspond only to the
asymptotically stable behavior of the linearization of the dynamical
system. In other words, assessed stability is quite unrealistic, since
natural systems are subject to environmental change and stochas-
tic disturbances, and their structure and dynamics may  never
settle to behavior predicted by model asymptotics. Instead, popu-
lations and communities may  show transient amplification that is
due to nonnormal community matrices, cf. Townley et al. (2007),
responsible for strange system behavior that defies explanation
using eigenvalues, cf. Trefethen and Embree (2005). Therefore, we
propose another theoretical indicator for the (robust) stability,
which allows one to incorporate the level of uncertainty (errors in
measurements, stochastic fluctuations, etc.) in empirical data, as
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well as the timescale for possible transitional instabilities and the
maximal amplification of initial perturbations. In addition, a novel
efficient numerical algorithm is constructed to compute such mea-
sure and allow researchers to analyze their empirical data of food
webs. Although the use of this new method is illustrated on a small
size soil food web (low resolution), due to the used computational
approach, the same algorithm can be used for large-scale empirical
food webs (high resolution), as well. While in this paper the new
stability indicator is introduced, discussed and justified in detail,
its application on a large variety of empirical food webs and conse-
quent ecological implications remain for further studies.

2. Materials and methods

2.1. Governing equations of material-flux networks

Following the research in Moore and de Ruiter (2012) and ref-
erences therein, we consider a food web of n ∈ N  functional groups
of living species with the pool of non-living organic matter whose
energy (as a common currency of the biomass, usually measured
as the level of carbon or nitrogen) flow is approximately driven by
the generalized Lotka-Voltera equations.

To introduce the model, for i ∈ N  := {1, 2, . . .,  n} denote the den-
sity of biomass (for soil food webs, the unit is typically gram of
carbon (or nitrogen) per hectare per centimeter of depth) at time
t ≥ 0 of the ith functional group by xi(t), while the density of biomass
in the detritus form is denoted by xn+1(t).

Furthermore, denote the sets of indices corresponding to the
similar functional groups as P – primary producers (plants, etc.),
C – primary consumers (herbivores, fungivores, bacteriovores and
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2 V.R. Kostić et al. / Ecological Modelling 320 (2016) 1–8

carnivores) and D  – detritivores (detritus consumers like certain
fungi, bacteria, etc.). Thus, obviously, N  = P ∪ C ∪ D.

Next, for i ∈ P, let gi > 0 be the growth rate of a primary producer,
while for i ∈ N, bi > 0 is defined as the death rate of the species due
to reasons other than predation, ai ∈ (0, 1) is its energetic assimi-
lation efficiency and pi ∈ (0, 1) is its production efficiency. While
density independent intrinsic increment rates gi and decrement
rates bi, understood as units per time, are characteristics of species
based on its history and/or its physiology, the energetic efficiency of
the trophic interaction ei = aipi represents the ratio of immobilized
matter or energy that forms new biomass in the form of growth and
reproduction to the amount of the matter or energy consumed. In
that setting, the assimilation efficiency is defined as the ratio of
the assimilated consumption (an intake of molecules through the
cellular membranes so they can be used for growth, reproduction
and maintenance) to the total amount of consumed biomass, while
the production efficiency is defined as the ratio of the assimilated
biomass used for production (growth and reproduction) to the total
amount of the assimilated biomass.

Finally, since the model we investigate includes the biomass of
nonliving organic matter that enters the system from the exterior,
we will define gD ≥ 0 as the growth rate of biomass from such an
allochthonous source in units per time.

The exchange of energy between the species is modelled by
functional responses. Namely, for each consumer j ∈ C, the char-
acteristic of how it adapts to the changes of density of biomass
in its prey i ∈ P in time t is given by fj(xi(t)). The simplest form
of functional response assumes that the attack rate is constant
regardless of the prey density, which leads to the linear function
fj(xi(t)) = cij xi(t), where cij ≥ 0 represents the consumption coeffi-
cient with the unit per biomass per time. In case when there is no
trophic interaction, this coefficient is set to zero, i.e., cij = 0. The sim-
ilar holds for detritivores j ∈ D  where fj(xn+1(t)) = cn+1,j xn+1(t) and
xn+1(t) is the density of biomass in the detritus in time t.

Finally, for all functional groups of organisms, i ∈ P ∪ C ∪ D,
self limitation is taken into account as intraspecific competition,
understood as a negative effect of the individual organisms to the
growth and reproduction of the others in their functional group of
species. This process is modelled as density dependent via the same
type of functional response, in our case – linear, fi(xi(t)) = ciixi(t),
where cii > 0 represents the degree of intraspecific competition and
includes acquisition and utilisation of joint resources (prey, space,
mates, light, essential nutrients, etc.).

Using these notations, the governing deterministic equations of
the energy flow in the functional food web are the following:

ẋi = gixi −
∑
j∈C

fj(xi)xj − fi(xi)xi, (i ∈ P)

ẋi = ei

∑
j ∈ N
j /= i

fi(xj)xi − bixi −
∑
j ∈ C
j /= i

fj(xi)xj − fi(xi)xi, (i ∈ C)

ẋi = eifi(xn+1)xi − bixi −
∑
j∈C

fj(xi)xj − fi(xi)xi, (i ∈ D)

ẋn+1 = gD +
∑
j∈N

bjxj +
∑

j ∈ C
k ∈ N
k /= j

(1 − aj)fj(xk)xj −
∑
j∈D

fj(xn+1)xj.

In case of linear functional responses, the dynamics follows the
law:

ẋ(t) = ˚(x(t)), (1)

where  ̊ : R
n → R

n is a nonlinear function defined by the matrix
of trophic interactions C = [cij] ∈ R

n+1,n+1 and parameters gD, bi,
ai, and pi(i ∈ N). Furthermore, C has the following block form,
due to the partitioning of the functional groups of species into
four index sets C, P, D  and {n + 1}, starting from the top predators
downwards:

C =

⎡
⎢⎢⎣

C[C, C]  0 0 0

C[P, C] C[P, P] 0 0

C[D, C]  0 C[D, D] 0

0 0 C[{n + 1}, D] 0

⎤
⎥⎥⎦ , (2)

where C[U, V] is a matrix whose rows are indexed by set U and
columns by set V. Furthermore, note that matrices C[P, P]  and
C[D, D] are diagonal, while the predator-prey interactions among
the primary consumers are contained in the lower triangular matrix
C[C, C].

A typical example of such food webs is below-ground food web
of Schiermonnikoog in the north of the Netherlands studied in
Neutel et al. (2007), see Fig. 1.

Since dynamical system (1) is a nonlinear one, its stability is usu-
ally investigated at the equilibrium point as the local asymptotic
stability, cf. Moore and de Ruiter (2012). Namely, the equilibrium
point x� ∈ R

n+1 is defined as a state of the system in which the sys-
tem stays once it achieves it. In other words, x� is a state vector
such that ˚(x�) = 0. An equilibrium state x� is locally asymptot-
ically stable if there exists ı > 0 such that for every x(0) that is
in ı neighbourhood of the equilibrium x� (i.e., ‖x�− x(0) ‖ < ı), it
holds that lim

t→∞
‖x(t) − x�‖ = 0. As it is widely known, this stability

property is independent of the norm ‖· ‖ used, and it is charac-
terised by the spectrum of the Jacobian matrix of (1) in the state
x = x�. In the setting of the food webs, the Jacobian matrix is often
referred to as the community matrix, cf. Moore and de Ruiter
(2012).

However, knowing that perturbation of equilibrium x(0) (i.e.,
‖x(0) − x� ‖ < ı for some small ı > 0) evolves at the time according to
ẋ(t) = Ax(t) + O(‖x(t) − x�‖2), where O  denotes little-o asymptotic
symbol, the starting perturbation propagates in time t with the fac-
tor approximated by ‖etA‖, where the norm is the induced matrix
norm by the original vector norm ‖· ‖. Thus, realistic behavior of
the system that has suffered a small perturbation at equilibrium
state is represented by the amplification envelope �A(t) : = ‖ etA ‖ ,
t ≥ 0. But, as Trefethen and Embree (2005) pointed out, for non-
normal matrix A, the eigenvalues alone are not enough to explain
the behavior of �A(t). Unlike the asymptotic stability, the behav-
ior of �A(t) is, of course, norm-dependent. But, having in mind
that we  deal with biomass densities, we are much more inter-
ested in their evolution in a specific norm (usually Euclidean
vector norm ‖x‖2 :=

√∑
i|xi|2 or max-norm ‖x‖∞ := max

i
|xi|),

than in the abstract setting of asymptotics (corresponding to the
existence of an abstract norm in which system will have “nice”
behavior).

Therefore, to asses ecological stability, instead of using asymp-
totic stability only, we  adapt it to another concept of stability that
incorporates, both, short-time and long-time square deviation from
the equilibrium. Namely, asymptotically stable dynamical system
(1) will be considered as (M,  T)-stable if its amplification envelope
�A(t) := ‖etA‖2 fits in the given amplification–timescale frame (M,  T),
i.e.,

max
t≥0

�A(t) ≤ M (amplification limit),

max
t≥T

�A(t) ≤ e−1 (timescale limit).
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