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a  b  s  t  r  a  c  t

Species  Distribution  Models  (SDM)  are  currently  common  currency  as proxies  of  species  distribution
range,  and  using  consensus  among  different  algorithms  is becoming  the latest  tendency.  This  information
is  frequently  used  to  estimate  conservation  status  or for  conservation  planning.  Nonetheless,  different
algorithms  have  huge  variation  in the  outcomes.  Usually  experts  determine  whether  or  not  a  model  is
accurate,  often  followed  by  a trimming  process.  However,  this  accuracy  estimation  cannot  be  reproduced.
Using  Mexican  endemic  amphibians  we  evaluate  the performance  of  nine  modelling  algorithms  (Artifi-
cial  Neural  Networks,  Classification  Tree  Analysis,  Flexible  Discriminant  Analysis,  Generalised  Boosting
Model,  Generalised  Linear  Models,  Multiple  Adaptive  Regression  Splines,  MaxEnt,  RandomForest,  Sur-
face Range  Envelope),  their  strict  geographic  consensus,  locality  records  and simple  convex-hull  areas
through  comparison  of:  (1)  their  presence/absence  within  Mexico’s  governmental  protected  areas,  (2)
range  sizes  projected,  and  (3) differences  in  estimated  richness  by  all  methods.  We  conducted  all  good
practices  prior  modelling  but  removed  the  trimming  factor  after  modelling  to  make  the  process  repeatable.
Presence–absence  threshold  was  determined  through  the  use of  the  receiver-operating  characteristic
(ROC).  Presence  within  conservation  network  of strict  consensus  and  locality  records  was  similar  which
indicates  an  over-fitting  of  the  former,  the rest  of the  algorithms  performed  similarly,  with  exception  of
Surface  Range  Envelope.  Richness  patterns  varied  greatly  among  algorithms.  Distribution  borders  were
the  areas  with  higher  sensitivity.  MaxEnt  obtained  the highest  performance  in  omission  but  consensus
performed  best  in correctly  predicting  species  ranges.  Closer  interaction  between  curators  and  modelers
would  increase  SDMs  accuracy,  which  would improve  conservation  planning  effectiveness.

©  2015  Published  by  Elsevier  B.V.

1. Introduction

Humans, like any other species, can affect their environment.
But since the Neolithic Revolution around 10,000 BC, human
populations have increasingly modified the ecosystems they live
in. Anthropogenic activities have been having widespread and
diverse effects on biodiversity, particularly after the Industrial
Revolution of the 19th Century with the over-use of all kinds of
fossil fuels—coal, oil, and their derivatives—that modify climate.
Expansions of domesticated ungulates (cattle, sheep, and goats)
and the agricultural frontier due to technological advances have
transformed the world’s ecosystems into fragmented semi-natural
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landscapes (Dirzo and Raven, 2003; Dornelas, 2010; Ehrlich
and Pringle, 2008). Moreover, the increase in use of chemicals
on farmlands (pesticides and agrochemicals), the production of
solid wastes, overfishing, the introduction of invasive non-native
species, as well as the ground, water and air pollution have sig-
nificantly modified almost every place on Earth, putting several
species on a threatened status (e.g., Butchart et al., 2010; Wake and
Vredenburg, 2008).

Over the last two decades, amphibians have come to be regarded
as one of the most threatened taxonomic groups (Stuart et al.,
2004). Land use change has been identified as the major threat
for amphibian diversity loss (Alford and Richards, 1999; e.g.,
Alford et al., 2007; Curado et al., 2011; Cushman, 2006; Gallant
et al., 2007; Johnson et al., 2011). Moreover, because they are
rather small poikilotherms animals depending on water or humid-
ity for reproduction, they show several of the most labile traits
towards environmental changes (Pearson et al., 2014). In addition,
Mexico is considered as one of the fourth-top countries with the
highest amount of threatened species (Frías-Alvarez et al., 2010;
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Stuart et al., 2004). It has 375 species of amphibians, of which 252
are endemic species, 80% are micro-endemics, i.e., species with very
restricted distribution range of less than 10,000 km2 (Frías-Alvarez
et al., 2010; Johnson et al., 2001; Ochoa-Ochoa et al., 2009, 2014;
Ochoa-Ochoa and Flores-Villela, 2006). Endemics and/or highly
rare species are expected on grounds of parsimony to be more
prone to extinction due to habitat loss and other drivers (Brook
et al., 2008; Payne and Finnegan, 2007; Sodhi et al., 2008).

Biodiversity conservation requires managing an integrated
landscape matrix that includes areas allocated to both production
and protection (Margules and Pressey, 2000). A key strategy for
protecting biodiversity from human related pressures has been the
establishment and maintenance of protected areas as refuges for
species, ecosystems and the natural processes upon which their
existence depend (e.g., Chape et al., 2005; Ochoa-Ochoa et al.,
2009; Rodrigues et al., 2004a). In the past, the selection of places
to be protected was to some extent a fortuitous and capricious
process. Nowadays, science based approaches such as systematic
conservation planning can involve different steps, where species
distribution ranges become the basic information for any conser-
vation plan (Butchart et al., 2012; Margules and Pressey, 2000;
Rodrigues et al., 2004b).

Nonetheless most places on Earth currently still present Lin-
nean and Wallacean shortfalls (Whittaker et al., 2005). This means
that we do not know the full list of occurring species for the
vast majority of sites (Linnean shortfall) nor where the species
are distributed (Wallacean shortfall). In order to overcome these
deficiencies, species distribution modelling (SDM) based on niche
modelling using primarily environmental layers has become the
bread and butter for most scientists involved in conservation plan-
ning (e.g., Koleff et al., 2008; Richardson and Whittaker, 2010).

Species distribution modelling is a booming field and, as a con-
sequence, a wide range of algorithms to model species distribution
has been developed. It has been reported that different algorithms
perform differently, not only in terms of ‘accuracy’ with respect to
a specific statistical measure (i.e., ROC, partial ROC, TSS, etc.) but
in terms of ‘distributional performance’, size, form and continu-
ity of the resultant area of distribution (Elith et al., 2006; Pearson
et al., 2006; Peterson et al., 2011). Ultimately, it has been left to
the experts to decide when an algorithm is modelling ‘accurately’
a species distribution. This situation should not be a problem for
widely spread and well-known species, but unfortunately this type
of assessment can be problematic for rare or poorly known species.

This type analysis becomes especially relevant, since the use
of species distribution modelling tools, based on climatic niche
modelling, are rapidly gaining critical importance in resilient con-
servation area design, in other words projections for the future,
including climate change (e.g., Garcia et al., 2014b). Due to the
static nature of protected areas, they must include future niches
for species derived from global climate change, in order to remain
relevant in the future. Thus climatic niche species distribution mod-
elling is a critical tool for the design of effective protected area
networks.

Here we explored nine different algorithms (GLM, CTA, ANN,
SRE, GBM, randomForest, FDA, MARS and MaxEnt) including two
of the three most common used for species distribution mod-
elling (i.e., MaxEnt and randomForest). In this study we did not
include the Genetic Algorithm for Rule-set Production (Stockwell
and Peters, 1999). Our aim is to compare systematically and
quantitatively the performance of these algorithms in Mexican
governmental protected area networks without the trimming pro-
cess, which is difficult to standardise in order to replicate. A
trimming process consists in cut (like cookie-cutter) the projec-
tion of the SDM based on some sort of ecogeographical aspect,
i.e., vegetation types, altitude, ecorregions, etc., or based on the
expert knowledge (e.g., Anderson and Martínez-Meyer, 2004;

Anderson et al., 2002; Jiménez-Valverde et al., 2010; Peterson et al.,
2011; Velásquez-Tibatá et al., 2013). To accomplish this goal, we
evaluated the proportion of species conserved in Mexican protected
area networks (i.e., evaluate spatial projection) based on: (1) local-
ity records, (2) convex Hulls of each species, (3) each of the nine
algorithms, and (4) the strict geographic consensus. We  also (5)
compared the size of the geographic projections of the algorithms
and finally (6) we assessed the differences in richness from the
cells containing locality records and the estimated richness of all
algorithms including the consensus.

We  used Mexican endemic amphibians as an example group
for two  main reasons: we wanted to model complete distributions,
and because the existence of a high percentage of endemic amphib-
ians (Frías-Alvarez et al., 2010; Parra-Olea et al., 2014), represents
a large and robust sample.

2. Materials and methods

2.1. Database

To achieve the proposed goals, we  used the most comprehen-
sive database of locality records for the endemic amphibians of
Mexico. This database includes records of more than 47 collec-
tions. Most of these were obtained directly from the museums.
This database was refined and updated both geographically and
taxonomically. Geographical refinement consisted of a visual spa-
tial inspection of species by specie locality records with ArcMap 10
and Access. During this process, the records were compared against
the known distribution addressed in literature. If a record was geo-
graphically distant from the ‘known distribution range’, then it
was removed from the database. We  decided to use this drastic
method to reduce uncertainty in subsequent analyses. It is worth
mentioning that when we had access to a specimen correspond-
ing to a record geographically distant, all data -including animal
determination- was  verified. In some cases, when both specimen
determination and locality georeference were right, we  kept the
original record. In other cases, where we  could correct the record
either by actualizing determination or locality georeferenciation,
records were mostly kept; but there were some cases that had to be
eliminated. Taxonomic revision consisted of nomenclature updated
according to various sources, mainly following taxonomy proposed
by Frost (2014). The database contains 77,812 locality records of
252 species. From this database, we selected unique records based
on climatic variables grain/cell size 0.083◦ (approx. 1 km × 1 km).
This was  done to avoid bias during the modelling process towards
areas with high amount of records. Using the complete database of
unique-gridcell records and based on correlation we selected ten
of the 19-bioclimatic variables of Worldclim (Hijmans et al., 2005;
http://www.worldclim.org) that were the less covariant based on
the records of the whole database. We used the same set of vari-
ables to model all species, being: (i) isothermality ((mean diurnal
range/temperature annual range) × 100); (ii) temperature season-
ality (standard deviation × 100); (iii) temperature annual range
(max temperature of warmest month—min temperature of coldest
month); (iv) mean temperature of driest quarter; (v) mean tem-
perature of warmest quarter; (vi) annual precipitation; (vii) mean
precipitation of driest month; (viii) mean precipitation of driest
quarter; (ix) mean precipitation of warmest quarter; and (x) mean
precipitation of coldest quarter.

2.2. Accessible area

Before the actual modelling, we selected a specific extent of
the area of distribution modelling or the accessible area (Barve
et al., 2011; “M”, Soberón and Nakamura, 2009), because it has
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