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a  b  s  t  r  a  c  t

Individual-based  models  (IBMs)  can  simulate  the  actions  of  individual  animals  as  they  interact  with
one  another  and  the  landscape  in  which  they  live.  When  used  in spatially-explicit  landscapes  IBMs  can
show  how  populations  change  over  time  in  response  to management  actions.  For  instance,  IBMs  are
being  used  to  design  strategies  of conservation  and  of  the  exploitation  of fisheries,  and  for  assessing  the
effects  on  populations  of  major  construction  projects  and of novel  agricultural  chemicals.  In  such real
world  contexts,  it becomes  especially  important  to  build  IBMs  in  a principled  fashion,  and  to  approach
calibration  and  evaluation  systematically.  We  argue  that  insights  from  physiological  and  behavioural
ecology  offer  a recipe  for building  realistic  models,  and  that  Approximate  Bayesian  Computation  (ABC)
is a promising  technique  for the calibration  and evaluation  of  IBMs.

IBMs are  constructed  primarily  from  knowledge  about  individuals.  In ecological  applications  the rel-
evant  knowledge  is found  in physiological  and  behavioural  ecology,  and  we approach  these  from  an
evolutionary  perspective  by  taking  into  account  how  physiological  and  behavioural  processes  contribute
to  life  histories,  and  how  those  life  histories  evolve.  Evolutionary  life  history  theory  shows  that,  other
things  being  equal,  organisms  should  grow  to sexual  maturity  as  fast as possible,  and  then  reproduce
as  fast  as  possible,  while  minimising  per  capita  death  rate. Physiological  and  behavioural  ecology  are
largely  built  on these  principles  together  with  the laws  of  conservation  of  matter  and  energy.  To  com-
plete  construction  of  an  IBM  information  is  also  needed  on  the  effects  of  competitors,  conspecifics  and
food  scarcity;  the  maximum  rates  of  ingestion,  growth  and  reproduction,  and  life-history  parameters.

Using this  knowledge  about  physiological  and behavioural  processes  provides  a  principled  way  to
build  IBMs,  but  model  parameters  vary  between  species  and  are  often  difficult  to  measure.  A  common
solution  is  to manually  compare  model  outputs  with  observations  from  real  landscapes  and  so  to  obtain
parameters  which  produce  acceptable  fits  of  model  to data. However,  this  procedure  can  be convoluted
and  lead  to  over-calibrated  and  thus  inflexible  models.  Many  formal  statistical  techniques  are  unsuitable
for  use  with  IBMs,  but  we argue  that  ABC  offers  a potential  way  forward.  It can  be  used  to  calibrate
and compare  complex  stochastic  models  and  to  assess  the uncertainty  in their predictions.  We  describe
methods  used  to implement  ABC  in  an  accessible  way  and illustrate  them  with  examples  and  discussion
of  recent  studies.  Although  much  progress  has been  made,  theoretical  issues  remain,  and  some  of these
are  outlined  and  discussed.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A major challenge in ecological modelling is to make reliable
predictions about what will happen to real populations in real
landscapes. In some ways this may  seem a simple task—Newton
solved similar problems in mechanics over 300 years ago. But
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animals and plants are not identical particles obeying simple math-
ematical laws, they make complex decisions based on their needs
and perceived opportunities in their environments. Only with the
advent of computing power has it become possible to simulate
these processes with any degree of realism, and so to link the lev-
els from individual organisms to populations of individuals. In this
approach what happens to the population emerges from complex
interactions between autonomous individuals and their environ-
ments, in the computer simulations as in life.

Models are always simplified representations of the real sys-
tem, and so a trade-off is necessary between model complexity
and realism (Evans et al., 2013). The different degrees of this

http://dx.doi.org/10.1016/j.ecolmodel.2015.08.012
0304-3800/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

dx.doi.org/10.1016/j.ecolmodel.2015.08.012
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2015.08.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:e.e.vandervaart@reading.ac.uk
mailto:a.s.a.johnston@pgr.reading.ac.uk
mailto:r.m.sibly@reading.ac.uk
dx.doi.org/10.1016/j.ecolmodel.2015.08.012
http://creativecommons.org/licenses/by/4.0/


114 E. van der Vaart et al. / Ecological Modelling 326 (2016) 113–123

trade-off are characterised by the different model types available.
Differential equation models are typically used in simple assess-
ments of unstructured population growth, whilst matrix models
are essentially sets of linear difference equations which separate
the population into classes (e.g. life-cycle stage) with class-specific
life-history parameters (e.g. juvenile survival). Both approaches
provide insight into general patterns of population growth in
specified environmental conditions. They have the advantage that
they can accept population-level data on birth and death rates,
and they are often tractable using analytical methods. However
they cannot easily accommodate autonomously acting individ-
uals, and it is difficult to characterise the effects of location and
habitat.

These high levels of detail can readily be incorporated into
individual-based models (IBMs; also called agent-based models
(ABMs)). In IBMs, the actions of unique individuals are simu-
lated as they interact with one another and the landscape in
which they live (DeAngelis and Mooij, 2005). Individuals can
vary according to their state variables (e.g. age, sex, mass) whilst
patches of mapped landscapes can be characterised by key eco-
logical drivers (e.g. temperature, food, exposure to chemicals). The
dynamics of populations in different environmental conditions
then emerge from simulations of individuals’ behaviours (Grimm
and Railsback, 2005). Thus, where prediction is required about the
fate of populations in different landscape scenarios, one way ahead
is through IBMs (Stillman et al., 2015). Accordingly, IBMs are cur-
rently being used to design strategies of conservation and of the
exploitation of fisheries, and for assessing the effects on popu-
lations of major construction projects and of novel agricultural
chemicals (see, e.g., Galic and Forbes, 2014; Hartman and Kitchell,
2008; Nabe-Nielsen et al., 2014; Stillman and Goss-Custard,
2010).

Although IBMs are powerful tools for ecological management,
they also face major challenges. There may  not be sufficient data
available to build a realistic model, running IBMs may  be com-
putationally expensive, and run times may  be prohibitively long.
Furthermore attempts to represent multiple processes and interac-
tions in IBMs can lead to models being over-parameterised, leading
to reduced realism and an inability to extrapolate to other sites
and/or time periods. Their predictions are then imposed rather
than emergent (Grimm and Railsback, 2005; Martin et al., 2013).
Because models are needed to forecast what happens in novel con-
ditions, it is desirable that they be mechanistic in the sense that they
accurately capture the underlying relationships between biological
processes and environmental conditions.

In this paper we consider two particular problems: How to
build ecological IBMs from first principles, and how to calibrate
and evaluate them. When IBMs are built to predict the numbers
and spatial distributions of animals, as is often the case in applied
studies, we argue that insights from physiological and behavioural
ecology offer a sound recipe for building realistic models. We
also argue that model calibration and evaluation can be achieved
using the new technique of Approximate Bayesian Computation
(Beaumont, 2010). Thus the paper has two foci, which run in par-
allel but are not necessarily related to each other. Together they
give our vision of “next generation ecological modelling”, which
is the focus of the special issue in which this paper appears. We
try to produce concrete suggestions, but hope our readers will for-
give us for not being able to fully describe the pros and cons of
alternative approaches. This is partly for lack of space, but also in
part because the new techniques we envisage are not yet fully
developed or compared with alternatives, so informed compar-
isons and discussion are not yet possible. Our overarching aim is
to be able to link the levels from individuals to populations in a
transparent and credible fashion that is firmly rooted in biological
knowledge.

2. Building IBMs from first principles

In this section we identify principles which may  be used to build
ecological IBMs and consider how to build such models using avail-
able biological knowledge. Our approach is partly based on Sibly
et al. (2013) and is similar to the Dynamic Energy Budget approach
(Kooijman, 2010; Martin et al., 2012). We  then consider how pop-
ulation dynamics emerge from the simultaneous behaviours and
interactions of individuals. At the end of the section we discuss
some of the complications that arise in linking the levels from indi-
viduals to populations.

IBMs are based on knowledge about individuals, and the subdis-
ciplines of biology that deal with individuals are physiological and
behavioural ecology. These consider how physiological processes
within individuals, and decisions made by individuals, contribute
to life histories. Natural selection acts on life histories, favouring
some at the expense of others, and this has ramifications for the
evolution of physiologies and behaviour. So it is sensible to start by
considering how life histories evolve.

The theory of life-history evolution is well established (see
e.g., Sibly, 2002; Stearns, 1992) and explains why organisms are
expected to maximise Darwinian fitness and so to win out in the
struggle for existence in the environment in which they evolved. In
particular other things being equal organisms are expected to:

• Grow to sexual maturity as fast as possible (Axiom 1)
•  Reproduce as fast as possible (Axiom 2)
•  Minimise per capita death rate (Axiom 3)

The phrase ‘other things being equal’ means that growth, repro-
duction and death rate are independent, i.e.,  they do not trade off
against each other. However this is not always the case, e.g.,  grow-
ing faster may  only be possible by taking risks, which may  mean
the death of the individual. In such cases organisms may  trade off
risk of death to increase their growth rate. Much attention has
been given to the evolution of life histories that are subject to
constraints imposed by life-history trade-offs (Sibly, 2002; Stearns,
1992). The predicted outcome of the evolutionary process in a con-
stant environment is referred to as an optimal strategy, meaning the
strategy that maximises Darwinian fitness subject to the imposed
constraints. Constraints and opportunities differ among species,
and this is one reason why species differ from each other. Incor-
porating trade-offs into IBMs can be straightforward; for instance,
the increased mortality that comes with foraging in dangerous but
rewarding places may  be a direct result of encountering predators
more often. Provided the different situations of different species
are well-modelled, their different trade-offs should emerge auto-
matically.

One major constraint to increasing Darwinian fitness stems from
the availability of resources. The energy and nutrients needed to
build animal bodies are derived from food, but food may be in
limited supply. This imposes major constraints on behaviour and
physiology as follows:

• Energy is conserved within individual bodies (Axiom 4)

This means that the only energy available to power organisms
is that which they derive from food or sunlight. Allocation of
resources within bodies is similarly constrained:

• Matter is conserved within individual bodies (Axiom 5)

This means that the only chemicals available to build organism
bodies are those they derive from food.

Life-history theory is the foundation on which physiological and
behavioural ecology are built. We  now consider their relevant find-
ings at the level of the individual.
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