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a  b  s  t  r  a  c  t

Individual-based  models  (IBM)  simulate  populations  and  communities  whose  dynamics  are  shaped  by
the properties,  interactions  and  behaviour  of  the  constituent  organisms  as  well as  the corresponding
abiotic  boundary  conditions.  Structurally  realistic  IBM can provide  insights  into  the  functioning  of  such
systems  and predict  the  effects  of variable  scenarios.  We  suggest  complementing  IBM  with  machine
learning  (ML)  methods  in  order  (i) to  visualise  correlation  patterns  between  model  inputs  and  model
outputs,  (ii)  to provide  simulation-based  decision  tools  for non-modellers,  and  (iii)  to  derive  information
about  factors  difficult  to obtain  in the  field  on  the  basis  of  data  that  are  more  readily  measurable.  On  top  of
this, ML  methods  can  complement  the established  pattern-oriented  modelling  approach  used  to  analyse
the behaviour  of  IBM  and  to detect  model  uncertainties.  As an  example  to  demonstrate  the  strength  of
an IBM-ML  connection,  we  combined  the  individual-based  Plant  Interaction  Model  (Pi model)  with  self-
organising  feature  maps  (SOM)  – a special  type  of ML. Based  on simulation  experiments  with  complete
knowledge  of the  simulated  system,  the SOM  was  trained  and used  to visualise  the  nonlinear  relationship
between  two  IBM  inputs  (namely  the mode  of  below-ground  competition  and  below-ground  resource
limitation)  and  two  model  outputs  (the  mortality  rate and  the  Clark  Evans  Index  of  the  spatial  distribu-
tion  of  plants).  Our  study  also  highlights  an  application  of  the  SOM  to  infer  the  modes  of  below-ground
competition  (either  symmetric  or asymmetric)  from  the  remaining  measurable  variables  (resource  limi-
tation,  mortality  rate and  Clark  Evans  Index).  This  procedure  was  successful  in 92%  of  cases,  revealing  its
great potential  as a means  to assess  parameters  difficult  to  measure  in nature.  This  example  shows  that
SOM are  powerful  tools  to  revert  the  hierarchy  of  variables  and  to  generalise  dependencies  of parameters
in  individual  based  modelling.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In individual-based models, complex interactions between
organisms occurring over multiple time steps reveal emergent
properties of populations and communities that cannot be pre-
dicted based on the averaged characteristics of the organisms. The
determination of properties across different hierarchical levels can-
not be achieved by a simple reverse calculation. In experimental
ecology, however, the population properties are often easier to
measure than the whole set of model assumptions on the level
of the individual. The pattern-oriented modelling (POM) approach
was developed to overcome this problem (e.g., Wiegand et al., 2003;
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Piou et al., 2009; Grimm and Railsback, 2011 and references within).
Rigorously applied in all steps of the modelling cycle (Grimm and
Railsback, 2005), POM links patterns occurring at individual level
with patterns observed at the system level, and vice versa (see the
techniques of inverse modelling introduced to IBM by Wiegand
et al., 2003; Grimm et al., 2005 and others).

POM supports the definition of the right entities and scales of
an IBM, the selection of the most reasonable sub-models, and the
calibration of the parameters (e.g., Wiegand et al., 2003; Piou et al.,
2009; Grimm and Railsback, 2011; Jakoby et al., 2014). Patterns are
used (i) to determine which scales, entities and variables a model
needs, (ii) to test contrasting theories about the functioning of a
system by selecting the most reasonable sub-models represent-
ing key processes, and (iii) to find suitable parameter sets through
calibration. A strict adherence to all modelling steps leads to ‘struc-
turally realistic’ models with predictive power even for changing
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environmental conditions (Berger et al., 2008; Lin et al., 2012,
2013). Structural realism is achieved when the objects, variables
and processes described in the model correspond to the internal
organisation of the real system so that changes in the environment
result in realistic responses at the corresponding hierarchical levels.

The contribution of IBM to applied ecology is particularly strong
where predictions obtained through simulation experiments can
directly guide management (e.g., Railsback et al., 2002; Stillman
et al., 2015) or where driving factors that are unsuited to direct
measurement in the field can be quantified (e.g., Berger et al., 2004,
2006; Meyer et al., 2014). The former is limited by the fact that
separate IBM cannot be developed for each particular scenario and
location. The latter on the other hand requires long-term experi-
ence in developing and using IBM, limiting the group of ecologists
who can take advantage of this approach.

In IBM, the emerging, higher-level response variables result
from the low-level parameters on the individual scale. To map  the
reverse relationship so as to draw conclusions regarding the causes
of observed higher-level patterns, a direct functional shortcut
between model input and model output is necessary. This possi-
bility would be valuable to further strengthen the link between
IBM research and applied ecology. In the following, we  use the
term ‘reverse modelling’ to denote this approach and to distinguish
from the ‘inverse modelling’ used in the POM context, for exam-
ple, by Wiegand et al. (2003). Inverse modelling, unlike reverse
modelling, is a largely iterative procedure. We  suggest that meth-
ods of machine learning could prove useful as they provide several
properties suitable for this purpose, as described in the following.

Artificial neural networks (ANN) were first developed by neu-
roscientists to describe human neural reactions. Rosenblatt (1958)
developed the Perceptron network (also known as multilayer feed-
forward network) for pattern recognition. In recent decades, the
Perceptron network has become the most widely employed in
applied sciences. Most of the applications cited below refer to mul-
tilayer Perceptron networks. A completely new type of ANN – the
self-organising map  (SOM) or Kohonen network – was introduced
by Teuvo Kohonen (1982). In addition to these milestones in the
development of ANN, several other such models exist, as presented
in Hagan et al. (1996).

Since the broad entry of computers and simulation models into
the applied sciences, ANN have been employed in a wide range of
applications as flexible empirical modelling tools. One of the main
features of ANN – function approximation – made them quite useful
for various purposes. Data-driven approaches help to detect func-
tional relations between measured input and output variables (e.g.,
Simpson et al., 1992, for plankton identification).

The application of ANN is most powerful when they are used
as surrogate models; that is, ANN trained using datasets obtained
by mechanistic models. The advantage of such ANN is that they
can memorise system behaviour beyond the observations made in
the field, because they benefit from the structural realism in the
mechanistic model. By reducing the complexity to only the vari-
ables relevant to the researcher and simplifying their linkage to
just a single functional relation, they are able to learn a wide range
of model behaviour and at the same time reduce the computation
costs of application. ANN have found widespread implementation
as surrogate models used to substitute sophisticated mechanis-
tic models based on differential equations for nonlinear temporal
processes; for example, in water quality modelling for standing
water bodies (e.g., Petzoldt et al., 2003), rainfall-runoff models (e.g.,
Cullmann, 2007), hydrodynamic flow models (e.g., Solomatine and
Avila Torres, 1996; Peters et al., 2006) and as ecological simulation
models used, for instance, to predict the propagation of green algae
in the Mediterranean Sea (Aussem and Hill, 1999).

Lek and Guégan (1999) provided an introduction to the use of
the multilayer Perceptron networks and Kohonen networks (or

SOM) as tools in ecological modelling. Kalteh et al. (2008) provided
a review of modelling applications with SOM in water resources.
Zhang (2010) presented a good overview of ANN focussing on both
a theoretical explanation of ANN types and on ecological applica-
tions. More recent case studies demonstrated the broad potential
of such methods for ecological research; for example, Watts et al.
(2011) used ANN to predict the probability of reef occurrence as
a function of bathymetric and slope variables; Millie et al. (2012)
trained ANN to predict micro-algae abundance; Kulhanek et al.
(2011) set up ANN to predict carp distribution from limnological
and climatic variables for lakes in Minnesota.

In some approaches, multilayer Perceptrons were used as sub-
modules in IBM to control the movement of agents. Huse and Giske
(1998) applied ANN to model fish migration on a daily basis in an
artificial environment. Dreyfus-Leon (1999) implemented ANN as
sub-modules within a spatially explicit IBM to mimic the search
behaviour of fishermen.

However, to the best of our knowledge, the potential offered by
ANN as tools to carry out reverse modelling is not being utilised in
ecology as yet. ANN may  complement IBM in a new way, helping to
find a link from the emerging patterns back to invisible (and only
assumed) properties of the individuals or their interactions. ANN
can be used as a reverse surrogate-models for IBM in situations
where we  can measure and simulate variables that result from a
particular process (high level parameters), but where the underly-
ing (low-level) parameters are not available. Multiple runs with the
IBM would provide a comprehensive database containing all possi-
ble reasons (model inputs) for combinations of model outputs. The
trained SOM then memorises the relationships between the vari-
ables for the whole parameter space. A prediction of the underlying
low-level properties is subsequently possible with a single step. In
this article, we  will demonstrate this for a particular example.

There is a multitude of statistical (e.g., randomForest, Pearson
et al., 2014) and ML  approaches (see above) capable of describing
functional relations and predicting variables. We  selected self-
organising feature maps for the purposes of this study. SOM is not
necessarily superior to other modelling techniques, but we made
this choice because SOM combines some useful properties for the
exploration of functional links and prediction purposes:

- SOM is trained unsupervised (this will be explained in more detail
in the methods section); i.e., there is no predefined response vari-
able;

- a visualisation of the SOM provides an easy to read summary of a
multidimensional correlation;

- SOM can predict any response variable even with incomplete
input datasets.

Giraudel and Lek (2001) compared SOM to a selection of statis-
tical approaches to predict abundances of tree species. They stated
that SOM provides a visual way  to find structures in ecological com-
munities and so facilitates the discovery of unexpected structures
within datasets. The focus of this paper is not a comparison with
other techniques derived from either ML  or classical statistics. The
aim was  restricted to the following specific research goals:

(1) To develop a SOM to visualise the complex correlation between
the input and output variables of an IBM describing plant pop-
ulation dynamics.

(2) To test the potential of the trained SOM to identify unknown
modes of below-ground competition based on variables that
are easier to measure in real systems, such as below-ground
resource limitation, which we  use as a proxy variable for
nutrient or water availability (e.g., soil moisture), or that are
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