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a  b  s  t  r  a  c  t

This paper  investigates  the feasibility  of  using  Approximate  Bayesian  Computation  (ABC)  to calibrate
and  evaluate  complex  individual-based  models  (IBMs).  As  ABC  evolves,  various  versions  are  emerging,
but  here  we  only  explore  the  most  accessible  version,  rejection-ABC.  Rejection-ABC  involves  running
models  a large  number  of  times,  with  parameters  drawn  randomly  from  their  prior  distributions,  and
then retaining  the  simulations  closest  to the  observations.  Although  well-established  in some  fields,
whether  ABC  will  work  with  ecological  IBMs  is still  uncertain.

Rejection-ABC  was  applied  to an existing  14-parameter  earthworm  energy  budget  IBM  for  which  the
available  data  consist  of  body  mass  growth  and  cocoon  production  in  four experiments.  ABC  was  able
to narrow  the  posterior  distributions  of  seven  parameters,  estimating  credible  intervals  for each.  ABC’s
accepted  values  produced  slightly  better  fits  than  literature  values  do.  The  accuracy  of  the  analysis  was
assessed  using  cross-validation  and  coverage,  currently  the  best-available  tests.  Of  the  seven  unnarrowed
parameters,  ABC  revealed  that  three  were  correlated  with  other  parameters,  while  the  remaining  four
were  found  to be not  estimable  given  the data  available.

It  is often  desirable  to  compare  models  to see  whether  all  component  modules  are  necessary.  Here,
we  used  ABC  model  selection  to compare  the  full  model  with  a simplified  version  which  removed  the
earthworm’s  movement  and  much  of the  energy  budget.  We  are  able  to  show  that  inclusion  of  the  energy
budget  is necessary  for a good  fit to  the data.  We  show  how  our  methodology  can  inform  future  modelling
cycles,  and  briefly  discuss  how  more  advanced  versions  of  ABC  may  be  applicable  to  IBMs.  We  conclude
that  ABC  has  the  potential  to represent  uncertainty  in model  structure,  parameters  and  predictions,  and  to
embed the  often  complex  process  of  optimising  an  IBM’s  structure  and  parameters  within  an  established
statistical  framework,  thereby  making  the process  more  transparent  and objective.

©  2015  Published  by  Elsevier  B.V.

1. Introduction

Animal populations consist of autonomous, adaptive individ-
uals, all figuring out their own ways of achieving their goals. From
these activities of individuals emerge population consequences,
such as spatial distributions, social structures and population
dynamics. For many questions, both theoretical and applied, sci-
entific knowledge exists at the level of the individuals or the
population, but not both; in these cases, individual or agent-based
models, here referred to as IBMs, can bridge the gap (DeAngelis
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and Mooij, 2005). In IBMs, the interactions among individuals and
between them and their surroundings are explicitly simulated, and
all individuals have their own  characteristics and make their deci-
sions accordingly. This makes IBMs uniquely suited to exploring the
effects of individual decisions on collective behaviour and to pre-
dicting how populations will change across time and space (Grimm
and Railsback, 2005).

Examples of theoretical questions studied with IBMs include
how ants build their nests (Buhl et al., 2005), how starlings coor-
dinate their flocks (Hildenbrandt et al., 2010) and how macaques
establish their relationships (Hemelrijk and Puga-Gonzalez, 2012).
In practical applications, IBMs have been used to estimate the
impact of development on coastal birds (Stillman and Goss-Custard,
2010), to aid in the management of fish stocks (Hartman and
Kitchell, 2008), and to assess the effects of pesticides on non-
target organisms (Schmolke et al., 2010). In all these cases, model
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processes are fit to some data. However, due to the inherent com-
plexity of IBMs, this process is often complicated, and the resulting
outcome is often difficult to evaluate (Augusiak et al., 2014).

Currently, most IBMs are, implicitly or explicitly, built and eval-
uated using ‘pattern-oriented modelling’ (POM). This approach is
essentially a protocol to be followed (Grimm and Railsback, 2012;
Grimm et al., 2005). It specifies how multiple patterns observed
in the real world should be used to iteratively design, select and
parameterise IBMs, with each pattern serving as a ‘filter’ that
rejects unsuitable model versions or parameterisations. Although
the method has worked well in practice, a future goal is ide-
ally to embed IBMs within mainstream statistical modelling and
prediction. The Bayesian framework offers a comprehensive and
well-trodden approach to this, but standard Monte Carlo meth-
ods for Bayesian inference are computationally intractable for all
but the most carefully structured models (Keith and Spring, 2013).
Conversely, ‘Approximate Bayesian Computation’, or ABC, enables
approximate Bayesian inference for models of almost arbitrary
complexity (Beaumont, 2010; Csilléry et al., 2010).

One key advantage of ABC, compared with other Bayesian meth-
ods, is that it is not necessary to analytically express how the
likelihood of the data depends on the model parameters. Instead,
ABC approximates these likelihoods by running models a large
number of times, with parameters drawn randomly from their
prior distributions, and then retaining the simulations closest to
the observations. In this way, ABC provides a systematic way of
assessing the support that different model versions and parame-
terisations receive from the available data, given some prior beliefs
about how likely they are. Thus, for individual-based modellers,
ABC has the potential to complement POM by making its rejec-
tions of unsuitable model versions and parameterisations more
transparent and statistically rigorous. In addition, because ABC
approximates full posterior parameter distributions, it provides a
concise overview of the uncertainty in a model’s parameter values,
which can then be propagated into a model’s predictions. Especially
for IBMs that are then used in practical ecological decision making,
this is an important feature.

Although the potential benefit of using ABC with ecological IBMs
has been noted (Sibly et al., 2013; Thiele et al., 2014; Topping et al.,
2012), whether it will work in practice is still uncertain. The origi-
nal development of ABC was within population genetics (Beaumont
et al., 2002; Pritchard et al., 1999; Tavaré et al., 1997), and in its basic
form, rejection-ABC, it has yet to be applied to an IBM with more
than two parameters (Sottoriva and Tavaré, 2010). In this paper,
we apply rejection-ABC to a fairly typical ecological example, a
14-parameter IBM fitted to four existing experiments. In this IBM,
Johnston et al. (2014) simulated the dynamic energy budgets of
individual earthworms as they forage, grow and reproduce. We  use
rejection-ABC both to parameterise the model and to compare it to
a simpler, possibly better model. In this way, we  aim to introduce
ABC to a wider audience, and to show that even simple imple-
mentations of ABC can provide surprising insights. In particular,
we demonstrate how standard elements of an ABC analysis can be
used to inform future modelling cycles. We  consider the potential
of more advanced versions of ABC in the context of the specific chal-
lenges posed by IBMs in the Discussion. A gentle introduction to the
use of ABC with ecological IBMs together with a primer on building
energy budget models from first principles will be available in van
der Vaart et al. (submitted).

2. Material and methods

The simplest version of ABC, rejection-ABC, originally described
by Pritchard et al. (1999), can be summarised as follows (Csilléry
et al., 2010): First, for each of the parameters of each model, a

reasonable prior distribution is chosen. Statistically, for simplicity,
we assume that each parameter has an independent prior dis-
tribution. Then, parameter values are sampled from these prior
distributions, a large number of times, and the model is run for each
of these samples, yielding some output. This output is compared
with the empirical data. Some number of the runs that give the
output closest to the empirical data are then ‘accepted’ as being
‘close enough’. The accepted simulations now provide a sample
of the posterior distributions of the model’s parameters given the
data. The same simulations can also be used for model comparison;
in this case, the ratio in which different models are retained gives
the relative probability that each model is correct. In the rest of
this section, we  first describe the empirical data available and the
earthworm IBM; then, we give a detailed description of the ABC
procedures used. All simulation results, the earthworm IBM and
the ABC code have been deposited in a figshare repository (van der
Vaart et al., 2015a,b), along with a brief guide to their use.

2.1. The empirical data

For our ABC analyses, we  used the same empirical data that
Johnston et al. (2014) originally used to assess the model’s fit. This
empirical data consists of the growth and reproduction data for
Eisenia fetida earthworms in different laboratory setups (Gunadi
et al., 2002; Gunadi and Edwards, 2003; Reinecke and Viljoen,
1990). In each case, five to ten earthworms were placed in small
containers and supplied with cattle manure for food, under vari-
ous feeding schedules (see Fig. 4 and Table S1). The earthworms
were weighed and all cocoons were removed and counted at regu-
lar intervals. These procedures were replicated in our simulations;
we assumed that the weighing of earthworms entailed a randomi-
sation of their position, but no homogenisation of the substrate.
The mean individual body masses and total cocoon numbers so
obtained are referred to as the summary statistics. In total, 160
summary statistics were used.

2.2. The individual-based model

For parameter estimation, we  used Johnston et al.’s (2014) IBM
of the earthworm Eisenia fetida. For model selection, this IBM was
compared with a simplified version of itself, which is described in
Section 3.2. The model is implemented in NetLogo, a programming
platform designed specifically for IBMs (Wilensky, 1999). Using the
IBM to simulate all the available empirical data takes approximately
half a second on a 3.4 GHz i7 iMac. Each time step, the earthworms
in the IBM forage independently and allocate the acquired energy to
maintenance, growth and cocoon production in a fixed order of pri-
ority (Fig. 1a). These priorities are represented by algorithms and
equations derived from fundamental physiological ecology (Sibly
et al., 2013). Each time step corresponds to a day. The model’s
parameters are in Table 1.

Eisenia fetida is predominantly surface-dwelling, and its envi-
ronment becomes patchy when foraging earthworms deplete the
food in their vicinity. To approximate this situation, we mapped
the environment in two dimensions and divided it into four recti-
linear patches, with food being homogeneously distributed within
each patch and variation between patches. The total area simulated
in this manner is 0.0144 m (see the Supplementary Information).
Whenever the experimental setup calls for food to be added or
removed, the amount is distributed equally across all four patches.

Each earthworm starts the simulation as a juvenile, with mass
Mb, until it reaches mass Mp, when it becomes an adult. Every daily
time step, it moves around randomly, with speed s, and ingests
food. This movement is the only stochastic aspect of the model.
An earthworm acquires energy according to Eq. (1), where X is
the food density and M is the earthworm’s current mass. This is
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