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The regeneration niche of trees greatly narrows the fundamental niche and is sensitive to climatic change.
Development from seed and phenology are regulated by biological and environmental controls, shap-
ing forest successional pathways. We hypothesized that recent climate change is reducing regeneration
suitability in northern forests. We used a process-based ecophysiological model to examine changes
in forest regeneration conditions across an elevational and latitudinal gradient in Alberta, Canada from
1923 to 2012. We compared these results to a recent empirical study in the region to infer the recent
drivers of regeneration change in northern forests. Our results suggest that these forests are experiencing
climatically driven declines in conditions suitable for regeneration. Contrary to previous findings indi-
cating poorer current conditions in low elevation forests, we found more stable regeneration potential
there, attributable to a relative abundance of soil moisture. Rocky soils resulted in modeled losses of soil
moisture at higher elevations, potentially preventing upslope migrations of species despite warming.
We identify potential mechanisms driving unexpected tree regeneration patterns described in previous
studies. Our simulations suggest a delayed response of forest regeneration to warming throughout the
past 90 years.
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1. Introduction

Tree development and phenology are related to climate through
evolutionary controls, influencing the early niche space of trees,
with plasticity potentially providing a buffer to maintain fitness
(Aitken et al., 2008; Vitasse et al., 2013). Important tree develop-
ment and phenology events include germination, establishment,
bud burst, growth, bud set, leaf senescence, seed fall, and dor-
mancy, among others (Richardson et al., 2013; Walck et al., 2011).
Climatic change can uncouple the phasing of fine-scale seasonal
weather variations with developmental processes and phenology
beyond the range of plasticity, reducing regeneration rates (Fridley,
2012; Richardson et al., 2013). This phase uncoupling can alter the
duration of important phenological processes and timing of phe-
nological events.
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The widespread adaptation of trees to local climatic con-
ditions (Alberto et al., 2013) indicates that tree phenology is
intricately tuned to optimize fitness for local environmental con-
ditions through gene expression, posttranslational modification,
and, genetic and epigenetic inheritance (Cooke et al., 2012; Liu
et al., 2010; Matzke and Mosher, 2014). Environmental effects are
estimated to exert greater influence on plasticity than genetics in
northern forests (Vitasse et al., 2013), while phenotypic variation
reflecting phylogeographic origins (Alberto et al., 2013) is not nec-
essarily adaptive (Duputié et al., 2015). Extreme weather events,
such as frost or drought, occurring at critical times during tree
development can have strong demographic effects on forests. Given
the importance of fine-scale climatic and phylogenetic variability,
high temporal resolution climate data (Cook et al., 2010) along
with a range of aggregate species tolerances can aid in the mod-
eling of these dynamics at the landscape scale, where individual-
or population-level data is seldom attainable.

We hypothesized that warmer conditions combined with
changes in soil water balance (Dobrowski et al., 2013; Piedallu
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Fig. 1. Study area overlaid on 90-m resolution NASA SRTM topography: (a) study area geographic context within North America; (b) biogeoclimatic subregions and weather
stations; (c) biogeoclimatic regions with subregion outlines and weather stations; (d) Soil regions with outlines and weather stations; available water holding capacity
(AWHC) classes are shown, the most sensitive edaphic model parameter, with red representing bare rock or effectively zero. (For interpretation of the references to color in

the figure legend, the reader is referred to the web version of this article.)

et al., 2013) and more rapid and severe extreme weather events
(Allen et al., 2010; Kamae et al., 2014; Trenberth et al., 2014) are
altering regeneration patterns in northern forests. Recent empirical
evidence suggests that this shift is already occurring (Boisvert-
Marsh et al., 2014; Lenoir et al., 2009; Urbieta et al., 2011; Zhang
et al., 2015). However, direct measurement remains confounded
by forest turnover, which can increase the amount of space avail-
able for recruitment (Carvalhais et al., 2014; Park Williams et al.,
2013; Woodall et al., 2013; Zhu et al., 2014, 2012). Additional con-
founding factors include patterns of fine-scale climate (Dobrowski
et al., 2013) and ontogenetic niche variation, whereby the niches
of species can change throughout development (Bertrand et al.,
2011a; Cavender-Bares and Bazzaz, 2000; Donohue et al., 2010;
Eriksson, 2002; Niinemets, 2010; Urbieta et al., 2011).

We suggest that changes to tree regeneration throughout north-
ern forests in recent decades have been driven by interactions
between climatic change and local soil patterns. To test this
hypothesis, we used a species-specific ecophysiological model
that explicitly represents major tree regeneration processes, based
on forest gap models. We parameterized the model for tree
species and soil textural classes across a 25.2 million hectare
study area in Alberta, Canada, encapsulating an important eleva-
tional and latitudinal gradient. We used daily resolution historical
weather station data for three decadal periods over the last
century, and for the most recent decade, to model the effects
of climatic change on forest regeneration throughout the past
90 years.

2. Materials and methods
2.1. Study area

We applied the Tree And Climate Assessment Germination and
Establishment Model (TACA-GEM) across fourteen biogeoclimatic
regions of western Alberta, Canada (Natural Regions Committee,
2006) (Fig. 1), coextensive with ecoregions in the United States
(Ricketts, 1999). The study area comprises a transition zone from

boreal forest at lower elevations to higher elevation Cordilleran
foothills and montane forests in the southern Canadian Rocky
Mountains. We derived soil and climate parameters for thir-
teen natural subregions, excluding the treeless alpine subregion.
Regional soil properties reflect a recent glacial history, primarily
consisting of morainal and glacio-lacustrine parent materials, with
gray luvisols and black chernozems representing the dominant soil
types (Natural Regions Committee, 2006). Luvisols are periodically
saturated and depleted of oxygen, whereas Chernozems occurs in
semiarid and subhumid climates, representing the dominant soil of
the Canadian southern interior plains (Soil Classification Working
Group, 1998). The region consists primarily of well-drained upland
soils.

Elevational and latitudinal gradients segment the study area
biogeoclimatically, with mean elevations ranging from 525 meters
in the boreal to 2350 meters in the alpine. The study area cov-
ers a latitudinal gradient from 49° at the U.S. border to 58° at the
northernmost point (NAD83 datum). The heavily forested foothills
region experiences higher levels of precipitation than surround-
ing areas, supporting productive lodgepole pine (Pinus contorta
var. latifolia) forests and an active timber industry. While most
Canadian provincial harvest levels remained stable over the past
four decades, harvest increased approximately four-fold in Alberta
(National Forestry Database, 2013), alongside a rise in oil, gas, and
mineral extraction activities. Regionally abundant species include
lodgepole pine (Pinus contorta), white spruce (Picea glauca), trem-
bling aspen (Populus tremuloides), and black spruce (Picea mariana)
(Natural Regions Committee, 2006; Zhang et al., 2015). Previous
studies show that this region became warmer and drier throughout
the 20th century (Luo and Chen, 2013; Peng et al., 2011).

2.2. TACA-GEM model design

The latest version of the Tree And Climate Assessment Ger-
mination and Establishment Model (TACA-GEM) presented herein
(Fig. 2) builds on establishment-only TACA-EM (Nitschke and Innes,
2008) and extends previous TACA-GEM versions (Nitschke et al.,
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