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a  b  s  t  r  a  c  t

In  this  work  we  present  a  novel  surplus  production  model  for fisheries  stock  assessment.  Our  goal  is
to  enhance  parameter  estimation  and  fitting  speed.  The  model  employs  a production  function  that  dif-
fers  from  the  canonical  logistic  (Schaefer)  and  Gompertz  (Fox)  functions,  but  is  still  connected  to  the
Pella–Tomlinson  formulation.  We  embed  this  function  in  a  state-space  model,  using observed  catch-
per-unit-effort  indices  and  measures  of  fishing  effort  as  input.  From  the  literature  we derive  Bayesian
prior  densities  for all model  hyperparameters  (carrying  capacity,  catchability,  growth  rate  and  error  vari-
ance), as well  as  the  state  (annual  stock  biomass).  We  use  the  well-studied  Namibian  hake  fishery  as a
case  study,  via  which  we compare  the  Schaefer,  Fox  and  Pella–Tomlinson  models  with  the new  model.
We also  develop  a package  for the  software  R, which  employs  a Shiny  application  for data  exploration,
model  specification,  and  output  analyses.  Posterior  densities  of  hyperparameters  and  reference  points
agree across  models.  Identifiability  issues  emerge  in  the  more  cumbersome  Pella–Tomlinson  model.  The
new model  yields  small  but consistent  improvements  in  precision.  It also  renders  implementation  faster
and easier,  with  no  hidden  truncation  of  negative  biomasses.  We  conclude  by  discussing  theoretical  and
practical  extensions  to  this  new  model.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Surplus production models provide simple descriptions of har-
vested populations, in terms of annual biomass levels (Bt), the
intrinsic growth rate (r), the carrying capacity of the environment
(K) and the efficiency of fishing gear (q; Hilborn and Walters, 1992;
Polacheck et al., 1993). The basic concepts underlying these mod-
els were introduced by Graham (1935) and developed by Schaefer
(1954), Beverton and Holt (1957), Pella and Tomlinson (1969)
and Fox (1970). Albeit criticized for their potentially excessive
simplicity (Megrey and Wespestad, 2013; Wang et al., 2014), sur-
plus production models are still widely used today, to generate
reference points for fisheries management, such as maximum sus-
tainable yield (Hilborn, 2001; Zhang, 2013).

Several approaches have been employed to estimate parame-
ters in surplus production models. Examples include ordinary least
squares (Uhler, 1980), maximum likelihood (Gould and Pollock,
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1997) and Bayesian inference (Walters and Ludwig, 1994). Some
methods entail important assumptions, such as equilibrium, the
existence of process and/or observation error, and prior informa-
tion (Hilborn and Walters, 1992; Polacheck et al., 1993; Kuparinen
et al., 2012).

Despite the parsimonious parameterisation of surplus pro-
duction models, inference can be problematic. Often, the only
information available stems from catch and effort data, which may
not suffice for reliable inference (Hilborn and Walters, 1992; Xiao,
1998; Quinn and Deriso, 1999; Chen, 2003; Magnusson and Hilborn,
2007; Conn et al., 2010; Glaser et al., 2011; Cook, 2013). In light
of this, it is important to examine posterior parameter correlation
structure and uncertainty (Parent and Rivot, 2012), to avoid erro-
neous model output interpretation and mismanagement (Ludwig
and Walters, 1981; Schnute and Richards, 2001; Needle, 2002;
Wang et al., 2009; Conn et al., 2010; He et al., 2011).

When full estimation appears unfeasible, setting some model
parameters to assumed fixed values is common in fisheries stock
assessment modelling. However, several authors have found this
to be poor practice (Rose and Cowan, 2003; Brooks et al., 2010;
Brodziak and Ishimura, 2011; Lee et al., 2012). For instance,
Mangel et al. (2013) showed that holding steepness and natural
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mortality constant fully determined key management reference
points, whilst Gould et al. (1997) observed that ignoring variability
in catch and effort data could overestimate the size of a fish stock
by 20%.

Given the difficulties in estimation and the advice against set-
ting too many constants, new estimation and modelling methods
are still sought (Kuparinen et al., 2012). In this work, we propose
a new surplus production model that facilitates parameter estima-
tion. We  establish a connection between the classical formulation
Pella and Tomlinson (1969) and ours. After manipulation, we obtain
a hierarchical multiplicative model, which can be linearised with
respect to most parameters, via logarithmic transformation. To con-
duct Bayesian inference, we set up priors for all parameters. We
describe how the model can be fitted to the well-studied Namibian
hake fishery data set, and demonstrate benefits of the new model
by comparing results with the Schaefer, Fox and Pella–Tomlinson
surplus production models (Hilborn and Mangel, 1997; McAllister
and Kirkwood, 1998; Parent and Rivot, 2012).

2. Methods

2.1. Data

We  use catch (thousands of tons) and effort (thousands of hours
trawled) data from the Namibian hake (Merlucius capensis and
M. paradoxus)  fishery, ICSEAF divisions 1.3 and 1.4, for the years
1965–1988 (ICSEAF, 1986; McAllister and Kirkwood, 1998). This
fishery consisted of Spanish bottom trawlers in tonnage class 7
(1000-1999 GRT; Andrew, 1986).

2.2. Model

Bayesian state-space models typically consist of three layers
(Berliner, 1996). The process layer characterises the temporal
dynamics of a stochastic process, as a function of (time-invariant)
hyperparameters. An observation layer connects this process with
the observable variables. The third layer contains a description of
the (prior) probability distribution of the hyperparameters and the
state at the first time instant. In the sections below, we specify these
three components, in the context of a surplus production model.

2.2.1. Standard process layer
In most situations, the total biomass (B) of an exploited popula-

tion cannot be observed directly. Nevertheless, we  may  postulate
a standard equation for its dynamics in discrete time t (Parent and
Rivot, 2012), as

Bt+1 = Bt + h(Bt) − Ct. (1)

In this equation, Ct denotes total catch and h(Bt) is a production
function, that is, a parametric function that provides an estimate of
biomass growth given its current level (Hilborn and Walters, 1992).
In the classical approach of Pella and Tomlinson (1969), h(Bt) is
defined as

h(Bt) = r

�
Bt

(
1 −
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)

, (2)

where r is the intrinsic rate of population growth, K is the carrying
capacity of the environment and � is a shape parameter. This leads
to the production model
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(
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)

Bt − Ct. (3)

With � = 1, the Schaefer (1954) production model is obtained:

Bt+1 =
(

1 + r
(

1 − Bt

K

))
Bt − Ct. (4)

At the other extreme, the limit � → 0 yields the Fox production
model (Fox, 1970):

Bt+1 =
(

1 + r
(

1 − log Bt

log K

))
Bt − Ct. (5)

From a theoretical standpoint, the addition of � to the set of
unknowns is sensible, as it allows the surplus production curve
to be asymmetric in relation to stock size (Hilborn and Walters,
1992). However, many authors recommend fixing it, as fisheries
data tend to be uninformative (Fletcher, 1978; Rivard and Bledsoe,
1978; Hilborn and Walters, 1992; Zhang, 2013).

The three process models described above can become stochas-
tic, by multiplying the right hand side of the equations with exp [�t],
such that �t ∼ N[0, �], i.e. �t is i.i.d. Normal with mean zero and
variance � (Parent and Rivot, 2012).

2.2.2. Alternative process layer
While the Schaefer and Fox simplifications fix � and keep r free,

in this work we  explore the opposite approach, which leads us to
a more tractable equation for biomass dynamics. Specifically, we
let the stock’s intrinsic growth rate be a function of depletion ratio
and shape parameter �,

rt = �
(

Bt

K

)−�

, (6)

yielding the production function

h(Bt) = rt
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Bt
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K

)�
)

. (7)

Hence, our approach also relinquishes one parameter (r) from the
three available in the Pella–Tomlinson model; �, on the other hand,
is free but restricted to the interval (0,1).

Next, we point out that total catch, C, is often only partly observ-
able, since it includes reported and unreported catches, as well as
discards. Therefore, instead of C, we employ the fishing mortality
rate F (also unobservable), such that

Ct = (1  − e−Ft ) × (Bt + h(Bt)) (8)

and

Ft∼N[qEt, �]. (9)

In Eq. (9), q is the (time-invariant and unknown) catchability
parameter, and E is the (measurable) fishing effort. Randomness,
with variance �, may  derive from transient fluctuations and possi-
ble long-term trends, unaccounted for fishing effort.

With Eqs. (6), (7) and (8), Eq. (1) simplifies to a product
(Appendix A.1):

Bt+1 = B1−�
t K�e−Ft . (10)

In Eq. (10), the consequences of extreme values of � are worth
studying. If � = 1, then biomass always bounces back to the car-
rying capacity, before the stock is harvested. In contrast, � = 0 leads
inexorably to extinction, even for mild fishing mortalities. Based
on these results, we call � an elasticity parameter, and dub popula-
tions with high/low values of � elastic/inelastic (see Appendix A.3
for illustration).

2.2.3. Reparameterization
To prepare the model for log-transformation, we  reparameter-

ize a few quantities in the process equation (10): define � = log(K)
as the log-carrying capacity; let � = log(q) represent the log-
catchability parameter; write ˇt = log(Bt/K) as the log-transformed
scaled biomass; and define the error term �t ∼ N[0, �].
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