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a  b  s  t  r  a  c  t

Understanding  animal  movement  provides  information  that helps  design  effective  conservation  initia-
tives.  We  intuitively  understand  that  the  way  animals  move  at large  scales  determines  the  extent  of  their
home range  and  their  migratory  patterns  –  and  we  know  that  these  features  are  relevant  to  decisions
about  the  location,  size  and distribution  of  protected  areas.  It is  less  intuitively  obvious  that  knowledge
of  movement  characteristics  at finer  scales  can  also  have  conservation  implications.  By  modelling  the
small  to intermediate  scale  movement  (1–103 m)  of a large  marine  predator  in a shallow  coastal  envi-
ronment,  we  show  how  different  assumptions  about  movement  patterns  influence  estimates  of  species
abundance  derived  from  field  observations.  Foraging  behaviour,  statistical  properties  of the swimming
path  and  average  speed  exert the greatest  impact,  suggesting  that  these  should  be  the  focus  of  further
experimental  work.  Better  data  would  inform  our  understanding  and considerably  reduce  the  uncertainty
in  abundance  estimation,  improving  conservation-related  decision  making.

Crown  Copyright  © 2015  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

Estimates of the abundance of large predators help inform
choices about which species and which areas need protection, and
how to monitor the effectiveness of protection (Hughes et al., 2014;
Pimm et al., 2014). The abundance of large predators cannot usu-
ally be observed directly, but can only be inferred indirectly from
counts of individuals, which is usually obtained from very sparse
spatial and temporal sampling. Estimating abundance from indi-
vidual counts is further complicated, partly because of observation
biases, but also because predators move and it can be difficult to
discriminate between different individuals. It follows that the way
predators move affects (i) the probability of detecting an individ-
ual at a given location during a certain time interval and (ii) the
probability that two separate detections are due to two  different
individuals, rather than a single individual seen twice.

Detailed understanding about how marine predators move is
still lacking so we need to make some assumptions. Often, this is
done without making the assumptions explicit (Boschetti et al.,
2011a). The aim of this paper is to show how these assumptions
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affect estimates of abundance obtained from camera surveys, using
remote underwater video surveys of sharks (e.g. Vanderklift et al.,
2014)) as a test system. Identifying which assumptions have the
greatest influence on estimates of abundance provides informa-
tion about which components of a predator’s movement deserve
more experimental attention, and the extent to which this will help
conservation decisions.

Computer models of animal behaviour have been used to sim-
ulate field surveys in order to assess species abundance and
distribution or to test survey design (Turnock and Quinn, 1991;
Zollner and Lima, 1999; Horne et al., 2007; Ward-Paige et al., 2010;
Rees et al., 2011; McCauley et al., 2012; Petrovskaya et al., 2012;
Chandler and Royle, 2013; Vanderklift et al., 2014). Depending on
model complexity, these approaches require the model developer
to make explicit (in the computer code) a number of assumptions
about movement patterns. Very simple models may  approximate
animal movement by Brownian motion leading to diffusion-like
area cover (Rowcliffe et al., 2008). A model user may then need
to provide the size and centres of home ranges. As an output,
the model may  provide, say, the probability of detecting an ani-
mal  at different positions in space. This, obviously, depends on the
assumed movement type (in this case Brownian motion). However,
how detection probability depends on the assumed movement type
might not be clear to the model user. At the other extreme, more
complex models may  allow the user to control a larger number of
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movement parameters, including the animal’s speed, the type of
movement (e.g. Brownian vs Correlated Random Walk), preferen-
tial directionality, time dependence, space dependence, and so on.
The requirement to provide many parameters entails more a pri-
ori biological knowledge, which is often lacking. Some users may
feel that in these circumstances, uncertainty in model outcomes
increases with model complexity. However, these requirements
highlight that if movement assumptions are not made explicitly by
the model user, they are made implicitly by the model design, often
leaving the user unaware of both these choices and their implica-
tions. Only once these assumptions are made explicit will the user
be able to appreciate the potential impact these choices can have
on the model’s behaviour.

In this work we provide an example of how uncertainty in some
parameters controlling animal movement can affect estimates of
abundance. We  describe a model to simulate the movement of
blacktip reef sharks (Carcharhinus melanopterus) in coastal reefs.
We  then use this model in an inverse mode (Tarantola, 1987;
Symons and Boschetti, 2012) to estimate shark abundance. By
showing which movement parameters most affect estimates of
abundance and uncertainty, we also provide information on which
of these parameters further experimental work should focus. We
do so by working at the intersection of three approaches, which
are well established in various disciplines, including ecological
studies. First, we explicitly recognise that numerical modelling
can vastly improve both processes understanding, data analysis
and field work design, along the lines of the ‘virtual ecology’
approach (Zurell et al., 2010). Second, we place emphasis on
understanding how processes at one scale can manifest as pat-
terns at different scales, usually referred to as ‘pattern-oriented
modelling’ (Grimm and Railsback, 2012) in ecology and more
generically as the study of emergence in complexity science and
applied mathematics (Shalizi and Crutchfield, 2001; Prokopenko
et al., 2009). Third, we emphasise visual description of our results
with the specific aim of developing an intuition for how move-
ment patterns influence estimates of abundance. Intuition is a
necessary component of any scientist’s work, but can be faulty
and lead to considerable systematic and recurrent judgement
mistakes even in experts (see Boschetti et al., 2011b, and ref-
erences within); computer modelling with explicit visualisation
capabilities can be very helpful in developing and checking our
intuition.

We describe all equations used in the model and provide the
information needed to reproduce our results. We  start by review-
ing some approaches commonly used to model animal movement.
We then treat the estimation of predator abundance as an inverse
problem and show how a model of animal movement can be used
to fit observations from underwater video cameras. We  proceed
by describing the model used in this work and show how parame-
ters controlling the modelled predator movement impact visitation
patterns and, in turn, estimates of abundance. In doing so, we
model realistic settings in a shallow reef environment from West-
ern Australia and apply our results to a real data set. We  conclude by
discussing the implications of our results in terms of future experi-
mental work and its potential impact on decision-making in marine
conservation.

2. Analysis of animal movement

Animal movement can be analysed at a number of levels, each
characterised by its own implicit temporal and spatial scale (Crist
et al., 1992; Barraquand and Benhamou, 2008; Getz and Saltz, 2008;
Nathan et al., 2008; Fronhofer et al., 2012; Benhamou, 2014). Here
we consider four levels of analysis. At the finest level, we have what
(Getz and Saltz, 2008) define as ‘fundamental movement elements’,

which animals perform in their daily activities (e.g. stepping, speed-
ing, lounging, stopping, standing) and which are mostly determined
by the physical and physiological characteristics of the species. At
the next level, fundamental movement elements are combined to
carry out specific activities (e.g. habitat choice, foraging, avoiding
predation, mating, resting). These represent ‘decisions’ and reac-
tions carried out at scales of fractions of seconds to minutes and
can be seen as incorporating the ‘causal’ mechanics responsible
for animal movement. At the third level, longer time series of unit
movements result in geometric patterns at the scale of minutes to
days and metres to kilometres, depending on the species. These
geometric patterns are usually analysed in terms of shape, spa-
tial extent covered and search and foraging efficiency, which can
be interpreted as global properties emerging from actions at finer
scales. While the first level describes the mechanics and the second
level supposedly includes the immediate ‘causes’ of movement, the
third level can be seen as providing an additional evolutionary feed-
back resulting from its adaptive efficiency (Kareiva and Shigesada,
1983; Viswanathan et al., 1999; Bartumeus et al., 2002; Reynolds
et al., 2007b; Bartumeus et al., 2008; James et al., 2011b; Humphries
et al., 2012; Kawai and Petrovskii, 2012; Reynolds, 2012a; Sims
et al., 2012; Palyulin et al., 2014). In the literature the first and sec-
ond levels of analysis are usually referred to as ‘mechanistic’, while
the third level is often referred to as ‘statistical’ (Bartumeus, 2009;
Gautestad, 2012).1

The fourth level is represented by the actual field observa-
tions. Data collection is usually carried out at a scale intermediate
between the mechanistic and statistical levels, but at a resolution
considerably sparser than both. This is where much of the debate
on whether the statistical movement patterns of large predators
are best described by Lévy flights, Brownian Motion or Corre-
lated Random Walks arises (Bartumeus et al., 2005; Jansen et al.,
2012; Reynolds, 2012c; Sakiyama and Gunji, 2013). In most circum-
stances, including the datasets we have collected, discriminating
between these statistical distributions is difficult (Edwards et al.,
2007; Sims et al., 2007; Gautestad, 2012; Humphries et al., 2012)
because they are affected by how the animal movement depends
on the local environment and the distribution of prey, as well as
by distortions imposed by the resolution or rate of measurements
(Zollner and Lima, 1999; Codling and Hill, 2005; Benhamou, 2012;
Ferreira et al., 2012; Patrick et al., 2014). As a result, it is important to
think of field observations as a product of the complex interactions
between an animal’s actions and the features, which constrain (e.g.
physical obstacles) or alter (e.g. prey–predator distribution, habitat
distribution, currents, winds) these actions (Getz and Saltz, 2008).

Information about movement patterns of large marine preda-
tors is mostly derived from studies of oceanic species, undertaken
in the open ocean, which can be considered essentially unbounded
(Humphries et al., 2010). In coastal reef ecosystems this is rarely, if
ever, the case. When information does come from coastal ecosys-
tems, the constraints imposed on animal movement by physical
obstacles are rarely explicitly discussed. Even if we had high res-
olution observations and their impact was  discussed, unravelling
the unconstrained movement patterns from the effect of the con-
straints would be very difficult. As a result care should be used
in adopting statistical movement characteristics observed in one
environment (open ocean, say) to a very different one (coastal
ecosystems).

1 This terminology may  lead to the misleading conclusion that the ‘mechanistic’
processes are deterministic and algorithmic and that stochasticity belongs only to
the statistical framework. Nevertheless, here we decided to adopt this terminology
out of consistency with current literature.
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