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a  b  s  t  r  a  c  t

Forest  landscape  models  (FLMs)  have  become  a  valuable  tool  for projecting  broad-scale  forest  dynamics,
but  incomplete  knowledge  about  model  behavior  can  make parameterization  challenging  and  outcomes
unreliable.  FLMs  generally  model  forest  growth  as a set  of interacting  processes,  and,  consequently,
predictions  can  be  influenced  by  process  or  parameter  uncertainty.  A sensitivity  analysis  can  potentially
help  identify  sources  of uncertainty,  but if it does  not  use  global  measures  of  sensitivity  nor  consider
that  sensitivity  in a process-based  model  is  likely  time-dependent,  results  could  be misleading.  Our
aim  was  to evaluate  the  sensitivity  of  nine  key  parameters  when  predicting  live aboveground  biomass
(AGB)  with  the  widely  used  FLM, LANDIS-II.  To  fully  explore  parameter  interactions  and  nonlinear  model
behavior,  we  selected  a  range  of  parameter  values  based  on LANDIS-II  applications  in North  America  that
was considerably  wider  than  in  previous  local  sensitivity  analyses.  Our  results  showed  commonalities
with  previous  studies,  which  concluded  the maximum  allowable  biomass  and  maximum  annual  net
primary  productivity  specified  for a species  were  most  influential  when  predicting  AGB.  In  contrast  to
earlier  work,  we also  clearly  demonstrated  how  relative  importance  was  time-dependent  for  all  but  the
least  important  parameters.  Interactions  between  parameters  and with  simulation  duration  generated
substantial  variability  in  AGB  and number  of  cohorts  established.  Results  will  improve  future  calibration
efforts  and  may  offer  insight  into  opportunities  for possible  model  refinements.  This  study  also  suggests,
however,  that parameters  which  cannot  be calibrated  based  on empirical  data  will  continue  to be a  major
source  of model  uncertainty.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Forest landscape models (FLMs) have become a valuable tool
for projecting broad-scale forest dynamics. Like forest gap models,
FLMs are founded on ecological concepts of tree growth, com-
petition, and survival, but they are distinguished by their focus
on modeling large areas and on explicitly representing landscape
heterogeneity introduced by variations in abiotic, biotic, and dis-
turbance processes (Mladenoff, 2004; Xi et al., 2009). A FLM can
also be dynamic in the sense that, not only will it provide spatially
explicit predictions, but those predictions will incorporate some
degree of spatial interaction between modeled entities (Mladenoff,
2004). Because of the increased computational demands that come
from modeling dynamic processes at broad scales, the structure
of FLMs tend to be less mechanistic and more phenomenological;
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thus, the finer-scale details of forest succession at the site level are
simplified based on empirical relationships representing succes-
sional pathways or species life histories (He, 2008).

Although FLMs are not generally intended for developing tac-
tical or operational plans for landscape management, they are
designed to allow researchers to compare the future outcomes of
alternative scenarios, which can provide valuable information and
decision support for land and resource managers (Gustafson et al.,
2011). FLMs can allow explorations of the spatial and temporal
variation in live aboveground biomass (AGB) resulting from anthro-
pogenic disturbances such as timber harvesting (e.g., Duveneck
et al., 2014) or natural disturbances such as fire (e.g., Sturtevant
et al., 2009). AGB is a commonly modeled property of the land-
scape because it provides a record of previous disturbance events
that can also influence the likelihood of future disturbance (Scheller
and Mladenoff, 2004). Before drawing conclusions, however, it is
important to understand how model predictions are influenced
by different sources of uncertainty (Lexer and Hönninger, 2004).
One possible source of uncertainty is lack of knowledge or consen-
sus about how a particular ecological process operates (e.g., how
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trees allocate carbon to aboveground vs. belowground pools) and,
thus, how that process should be structured in a model. Another
is incomplete understanding of boundary conditions or model
behavior in response to uncertainty or variability in parameter val-
ues, given a particular model structure. In ecological systems and
the models that attempt to simulate them, nonlinear interactions
among variables can create effects that are substantially different
from the effect of changing one variable, and those effects are hard
to predict without testing the model as a whole (Harper et al., 2011).

Performing a sensitivity analysis (SA) is a critical step in the
development of any ecological model, providing information both
about model structure and the effects of inputs on model out-
puts. Essentially two approaches are possible; a local SA (LSA) in
which each parameter is varied one at a time, or a global SA (GSA)
in which all parameters are varied simultaneously. Use of LSA is
relatively common in ecology and results can provide generalized
information about model behavior that can be helpful for inform-
ing model development and calibration. As model complexity and
uncertainty increase, however, the efficacy of varying one variable
at a time for understanding model behavior and parameter sensi-
tivity may  be limited (Harper et al., 2011; Song et al., 2013). GSA,
which is more computationally intensive, has been comparatively
underutilized, particularly in ecology (Harper et al., 2011). Until rel-
atively recently, statistical methods proposed to analyze the output
of a GSA generally required the assumption of linear relationships
between input parameters and model outputs (Saltelli et al., 1999).
Even if the assumption of linearity for a complex model is valid for
a narrow range of parameter values as is often used in sensitivity
analyses (e.g., ±10% of a reference value), application and parame-
terization of a publically available model to new areas may  generate
novel combinations of parameter values that will have unknown
effects on model behavior and output.

LANDIS (Landscape Disturbance and Succession) and its updated
version LANDIS-II (Scheller et al. 2007) are arguably the most
well-established FLMs. First released in the mid-1990s, LANDIS
was designed to stochastically simulate the spatiotemporal effects
of repeated interactions between forest disturbance and succes-
sion based on a moderate number of user-specified parameters
(Mladenoff and He, 1999; Mladenoff et al., 1996). Since the first
release, LANDIS or LANDIS-II have been used in more than 100 peer-
reviewed publications to simulate the impacts of a wide variety
of disturbances for which model extensions have been developed,
including wildfire, insect outbreaks, and drought. LANDIS has also
served as the basis for the development of other FLMs including
LANDCLIM (Schumacher et al., 2004) and QLAND (Pennanen et al.,
2004).

Landscapes are represented by a grid of cells in LANDIS, and in
its original design forest conditions within each cell were charac-
terized simply by tree species and age. Developers later expanded
the model output, with the release of the Biomass Succession
Extension, to include predictions of AGB with an additional set
of processes governing tree growth, competition, and mortality
(Scheller and Mladenoff, 2004). Evaluation of parameter sensitiv-
ity in the Biomass Succession Extension has so far been limited to
local analyses over a narrow range of parameter values. Scheller and
Mladenoff (2004) and Thompson et al. (2011) both varied a subset
of model parameters one at a time by ±10% and calculated the cor-
responding percent change in AGB. Results were similar between
the two studies; the same variables were identified as high rank-
ing in terms of importance and each had a proportionally small
effect on AGB (i.e., 4–7% change). Sensitivity was, however, only
evaluated at the endpoint of their simulations, which was  300 and
50 years, respectively. Growth and the accumulation of AGB are
time-dependent processes in the Biomass Succession Extension,
and the model includes parameters that were designed to be more
or less influential depending on stage of development (Scheller and

Mladenoff, 2004). Consequently, parameter sensitivity is also likely
to change with time, and a sensitivity analysis that is not global and
does not explicitly consider time as a factor could be misleading for
calibration (Song et al., 2013).

In the present study, we evaluated output variability and the
relative influence of parameters on predicted AGB modeled with
the LANDIS-II Biomass Succession Extension across a wide param-
eter space. We  used a nonparametric GSA framework (Harper et al.,
2011) that combines a Monte Carlo approach (Sobol, 2001) with
analyses based on regression trees. This method has previously
been applied to ecological models developed to describe coral reef
ecosystem dynamics (Edmunds et al., 2014) and seabird forag-
ing behavior (Langton et al., 2014). We  selected it rather than
a variance-based method (e.g., extended Fourier amplitude sen-
sitivity test) that can quantify the variance contribution of all
interactions with a certain parameter because we were interested
identifying which specific sets of parameters were interacting. We
also evaluated parameter importance as a function of the duration
of the simulation. Although we  expected that parameters identified
as influential in previous analyses would also rank relatively high in
our study (Scheller and Mladenoff, 2004; Thompson et al., 2011),
we also expected the relative ranking of some or all parameters
to change over time with stand age and as biomass accumulated
(Song et al., 2012). Our goals were (1) to better understand time-
dependent sensitivity of parameters in the context of a widely
used FLM and (2) to provide end-users of LANDIS-II with a better
understanding of parameter importance, parameter interactions,
and nonlinear relationships between parameters and output.

2. Methods

2.1. Model description

The Biomass Succession Extension of LANDIS-II simulates forest
growth annually and predicts AGB for each cell based on simpli-
fied representations of key ecosystem processes, including growth,
competition, senescence, and mortality of cohorts (Scheller and
Mladenoff, 2004). In the absence of disturbance, the annual change
in AGB for species-age cohort ij is a product of annual net pri-
mary productivity (ANPP) and mortality (M). Adopting the notation
of Scheller and Mladenoff (2004): Bijt+1 = Bijt + ANPPijt+1 − Mijt+1;
where Bij is the AGB of species-age cohort ij and t is year. ANPPij
is the realized or actual ANPP, which is assumed to increase log-
arithmically and asymptotically approach the maximum ANPP for
species i (ANPPMAXi) as Bij approaches the maximum for species
i (BMAXi). Mortality includes age-related mortality (MAGEij), which
increases exponentially with age, and partial cohort mortality
(MBIOij) that increases logistically as a function of AGB and accounts
for within-cohort loss of biomass resulting from tree competition
during stand development. In addition to ANPPMAXi and BMAXi, users
are required to specify values for two subjective shape parameters
(r and d) related to species life history. The growth shape parameter
(r) modifies the calculation of MBIOij, with larger values resulting in
higher rates of mortality during early stand development. The mor-
tality shape parameter (d) modifies the calculation of MAGEij, with
larger values resulting in later onset of age-related mortality. Both
MAGEij and MBIOij influence the total Bij achieved over the course of
a cohort’s lifespan because together they determine the number of
years a cohort is able to maximize its productivity.

Growth and mortality are also influenced by the number of
cohorts present in a cell, and the recruitment of new cohorts occurs
via a series of stochastic processes (Mladenoff and He, 1999). Any
cell with a cohort that has reached the user-specified age of sexually
maturity for that species can potentially act as a seed source. The
probability that seed successfully disperses from one cell to another
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