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a  b  s  t  r  a  c  t

The  climatic  conditions  of mountain  habitats  are greatly  influenced  by  topography.  Large  differences
in  microclimate  occur  with  small  changes  in elevation,  and  this  complex  interaction  is  an  important
determinant  of  mountain  plant  distributions.  In spite  of  this,  elevation  is not  often  considered  as  a  relevant
predictor  in  species  distribution  models  (SDMs)  for mountain  plants.  Here,  we  evaluated  the  importance
of including  elevation  as a  predictor  in  SDMs  for mountain  plant  species.  We generated  two  sets  of  SDMs
for  each  of  73 plant  species  that  occur  in the Pacific  Northwest  of  North  America;  one  set of models
included  elevation  as  a predictor  variable  and  the other  set  did  not. AUC  scores  indicated  that  omitting
elevation  as  a predictor  resulted  in  a negligible  reduction  of model  performance.  However,  further  analysis
revealed  that  the  omission  of  elevation  resulted  in  large over-predictions  of  species’  niche  breadths—this
effect  was most  pronounced  for species  that  occupy  the highest  elevations.  In addition,  the  inclusion  of
elevation  as a predictor  constrained  the  effects  of other  predictors  that  superficially  affected  the  outcome
of the models  generated  without  elevation.  Our  results  demonstrate  that  the  inclusion  of elevation  as a
predictor  variable  improves  the  quality  of  SDMs  for high-elevation  plant  species.  Because  of  the negligible
AUC  score  penalty  for over-predicting  niche  breadth,  our  results  support  the  notion  that  AUC  scores  alone
should not  be used  as a measure  of  model  quality.  More  generally,  our  results  illustrate  the importance
of  selecting  biologically  relevant  predictor  variables  when  constructing  SDMs.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In response to climate change, mountain plants are expected to
migrate to higher elevations than they currently occupy (Grabherr
et al., 1994; Nilsson and Pitt, 1991). While there is empirical
evidence supporting this prediction (Brusca et al., 2013; Feeley
et al., 2011; Jump et al., 2012), attempts at modelling the response
of mountain plants to warming have had contrasting results,
with some models predicting range expansions (e.g. Gottfried
et al., 1999) and others predicting contractions (e.g. Guisán and
Theurillat, 2000). This inconsistency is likely due to the complex
interactions between the regional macroclimate and the local geo-
physical factors that structure mountain habitats (Beniston, 2005;
Körner, 2007; Dobrowski, 2011). Such complexity may  only be
adequately captured by specialized modelling approaches (Randin
et al., 2009) where both the climatic and geographic attributes of
mountain regions are considered in the modelling procedure.

Species distribution models (SDMs) are widely used inferen-
tial tools that use climatic and geographic data associated with a
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species’ natural occurrence records (e.g. herbarium specimens) to
predict its past, current, and future distribution (Elith et al., 2006).
SDMs and their variants have frequently been used to describe and
predict the distributions of mountain plant species (Guisán and
Theurillat, 2000; Guisán et al., 1998; Lassueur et al., 2006; Randin
et al., 2009; Zimmermann and Kienast, 1999). However, the lack of
consideration for the intricacies of mountain habitats in the mod-
elling procedures – especially the choice of predictor variables –
often obscures the ecological value of their findings. For instance,
nearly all the models generated by Guisán and Theurillat (2000) for
alpine and subalpine plant species were driven primarily by mean
annual temperature, which is often confounded with several other
variables and may  be especially problematic along elevation gra-
dients (Vuille and Bradley, 2000). An ideal temperature predictor
would be physiologically relevant (Körner, 2007; Platts et al., 2013).
Randin et al. (2006) included physiologically relevant climatic vari-
ables in their models, but they excluded all geographic predictors
with the exception of slope. The authors suggested in hindsight that
their choice of predictors may  not have adequately captured the
complexity of the modelled mountain regions, and may  be respon-
sible for their generally weak result (Randin et al., 2006). Mountain
niches are influenced by microtopography; small differences in
microtopography will have significant effects on soil temperature,
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Fig. 1. Map  of the study area in northwestern North America and occurrence loca-
tions (black points) for all 73 species used in the present study.

freeze-thaw cycles, snow drifting, and wind, all of which affect
mountain niche properties (Gottfried et al., 1999). Thus, geographic
variables likely serve as surrogates for elusive climatic factors. For
this reason, it is crucial to utilize a well-constructed set of pre-
dictor variables that are relevant to the biology of species that
occupy unique habitats like those of mountain regions (Elith and
Leathwick, 2009).

Here, we evaluated the importance of elevation as a predictor
variable in SDMs for mountain plant species. We  focused on eleva-
tion because different microclimates can occur with small changes
in elevation. Furthermore, elevation often connotes local precipita-
tion and temperature features (Austin, 2002; Körner, 2007) and has
long been considered an important determinant of species distri-
butions in mountain habitats (Körner, 2004, 2007). We  pursue two
main objectives: first, we investigate whether elevation is impor-
tant for accurately predicting the distributions of mountain plant
species. Second, we explore the consequences of omitting eleva-
tion as a predictor variable in SDMs for mountain plants in terms of
both model quality and the ecological relevance of predictors that
influence the models.

2. Methods

2.1. Occurrence records

We  retrieved occurrence records from the Consortium of Pacific
Northwest Herbaria database (www.pnwherbaria.org/) for 73 vas-
cular plant species that occupy mountainous habitats in the Pacific
Northwest of North America (Fig. 1). The species included 56 herbs,
8 graminoids, 5 trees, and 4 shrubs that inhabit a range of elevations
from lowlands through alpine regions (see PANGAEA data package
for species list http://doi.pangaea.de/10.1594/PANGAEA.842513).
We  eliminated duplicate occurrences from the herbarium records
and accounted for some potential sampling bias (see Syfert et al.,
2013) by using ENMTools 1.4.3 (Warren et al., 2008) to ensure that
there was a maximum of one occurrence record per 1 km2 grid
cell for each species—this resolution corresponds to the resolu-
tion of our environmental data (see Section 2.2). After accounting
for sampling bias, the number of occurrence records for our study
species ranged from 33 to 1052 and their mean elevations ranged
from 683 to 2539 m (Fig. S1). We  did not verify the herbarium
collection data ourselves, and as such there may  be some errors
associated with the collections that were unaccounted for by our
analyses.

2.2. Environmental data

We retrieved data for the 19 BIOCLIM variables, monthly tem-
perature, and elevation from WorldClim (Hijmans et al., 2005). In
addition, we  derived 5 geographic variables from a 1 km2 digital
elevation model extracted from the National Geophysical Data Cen-
ter (www.ngdc.noaa.gov/mgg/topo/globe.html) to supplement the
climate and elevation data. We  retrieved potential evapotranspira-
tion (PET) data from the CGIAR Consortium for Spatial Information
(www.cgiar-csi.org) (Trabucco et al., 2008). PET characterizes the
atmospheric demand for water in a habitat. We  used the PET data
to calculate annual soil moisture deficit (SMD) for our study area as
the difference between annual PET and annual precipitation. Lastly,
we calculated growing season temperature (GST) for our study area
as the mean of May–August temperatures. All data were at 30 arc
second (∼1 km2) resolution.

To improve model interpretability, we  screened the environ-
mental variables for correlates (Phillips, 2008) and removed one
variable from each pair with correlation coefficients > |0.7| (see sup-
plemental for the screening procedure; Tables S1 and S2). Overall,
we retained six climatic variables and five geographic variables. The
climatic variables were: soil moisture deficit (SMD), growing sea-
son temperature (GST), mean temperature of the wettest quarter
(TWQ), mean temperature of the driest quarter (TDQ), precipitation
seasonality (PS), and precipitation of the warmest quarter (PWQ).
We retained both GST and TDQ in spite of their correlation (r = 0.78)
because plants actively respond to the growing season conditions,
which are better represented by GST (see Section 3). Furthermore,
MaxEnt is equipped with regularization procedure that to some
degree is capable of diminishing the effect of correlated variables
(Elith et al., 2011). The five geographic variables were: elevation,
slope, eastness, northness, and topographic position index (TPI).
Eastness and northness are linear components of aspect; eastness
is calculated as the sine of aspect and northness is calculated as
the cosine of aspect. TPI is a measure of surface undulation (see
Weiss, 2001). We performed all data processing (environmental
data extraction, derivation and conversion) using ArcGIS 10.1 (ESRI,
Redlands, CA).

2.3. Model procedure and evaluation

We used MaxEnt 3.3.3k (Phillips and Dudík, 2008) to generate
SDMs for the 73 plant species. MaxEnt requires presence-only data
and has been demonstrated to be more robust than other avail-
able modelling algorithms (Hernandez et al., 2006, 2008; Pearson
et al., 2007). MaxEnt computes a species’ probability (from 0 to 1) of
occurrence in a grid cell as a logistic function of the environmental
data associated with that cell. We  used cross-validation to gener-
ate 10 replicate models for each species: the data were split into k
folds (k = 10) and k—1 folds were used to train the models while 1
fold was  used for testing. Cross-validation is spatially robust as it
curtails model over-fitting by randomly selecting the records that
are used to generate each of the 10 replicate models. We  used the
average of the 10 replicate models for each species in all subse-
quent analyses. Because the number of occurrence records ranged
from 33 to 1052, we used the hinge feature for all the species to
facilitate model comparisons. The hinge feature requires a mini-
mum  of 15 occurrence records, and generates non-linear models
similar to that of generalized additive models that are easier to
interpret than standard models (Elith et al., 2011). We  separately
used the default setting to construct the models and the conclusions
reported here did not change (data not shown). We  applied a 10th
percentile training presence threshold, where suitable cells have
suitability scores that are greater than the worst 10% of occurrence
locations. All other settings were default.
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