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a  b  s  t  r  a  c  t

The  estimation  and  uncertainty  analysis  of  parameters  for dynamic  vegetation  models  is  a complex
process.  If  one  is  mainly  interested  in  parameter  estimation,  this  can  be done  with  simple  global  stochastic
search  methods,  while  uncertainty  analysis  is  carried  out  with  traditional  first-order  analysis,  which
significantly  reduces  the number  of  needed  model  evaluations.  Within  a nonlinear  regression  framework,
where  the  misfit  between  model  and  observations  is  expressed  as  a sum  of  weighted  squares,  we model
the  dynamics  of  tropical  forest  with  a size-structured  Sinko–Streifer  model  and demonstrate  the  general
calibration  procedure  on  a  virtual  data  set. A second  case  study  on real data  for  a  single  species  shows
that  surprisingly  total  stem  number,  basal  area  and  aboveground  biomass  are  the  minimum  observations
needed  for  successful  calibration.  A  third  case  study  on  real  data  for  a  three  species  group  shows  the
prediction  of  successional  states  while  only  using  the former  reduced  set  of  observations  for calibration.
The  methodology  is well  suited  for time  consuming  models,  where  only  limited  amount  of  forest  site
observations  are  available.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The calibration of dynamic vegetation models is a complex and
time consuming process. Calibration refers to the procedure of
adjusting the models parameters in such a way that the models
response matches experimental observations. In the past this often
has been done through manual calibration, making this a difficult
task, especially if these models are complex and parameters may
affect many processes at once. Recent research has applied Monte
Carlo techniques under a Bayesian context to estimate parameter
properties (Van Oijen et al., 2005, 2013; Hartig et al., 2013), but this
needs a large amount of model evaluations to make reliable esti-
mates of the underlying posterior distributions, because ecological
models often have strong parameter correlations. If one is primary
interested in parameter estimates and uncertainty assessment is
less important, methods of global stochastic optimization in a fre-
quentist context offer an alternative solution. The here presented
methods are widely used in other research fields, particularly in
the field of hydrological models (Duan et al., 1993; Tolson and
Shoemaker, 2007; Gallagher and Doherty, 2007) although their
application is new in the field of ecology.

∗ Corresponding author. Tel.: +49 3412351064; fax: +49 341235451064.
E-mail addresses: sebastian.lehmann@ufz.de (S. Lehmann),

andreas.huth@ufz.de (A. Huth).

In this study we  give an overview over the steps needed for suc-
cessful calibration of vegetation models and answer three specific
questions. (1) Are methods of stochastic optimization able to cor-
rectly identify parameters values for a model of tropical rain forest.
(2) What is the minimum amount of observation data needed to
make reasonable estimates. (3) Are the parameter estimates made
from observations at one point in time, able to make predictions
about the temporal behaviour of the vegetation model in the past
for a multi-species version of the model (succession).

2. Material and methods

In this section we give, among others, a more general introduc-
tion into methods, assumptions, possibilities and expected results
for ecological model calibration within a statistical framework. This
should help readers with a basic understanding to broaden their
view on the underlying concepts.

2.1. Nonlinear regression model

We  assume that the observed data vector y with dimension
|y| = n can be written in the following parametric form

y = m(�) + � (1)

where m(x) is the output of a (deterministic) model m with
the to-be-estimated parameter vector � ∈ � with dimension
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|�| = k and � ∼ N(0, S) is an additive multivariate normal dis-
tributed error term including systematic and measurement
error. The distribution of y is the result of convoluting the
error with the point mass ım(�), therefore, y ∼ N(m(�), S). We
further independent observation, which means that S = �2SW,
where SW = diag(1/w1, 1/w2, . . .,  1/wn) is a diagonal matrix
representing relative weights.

2.2. Parameter estimation

The unknown parameter vector � gets estimated through
maximum-likelihood estimation (MLE). The likelihood of y can be
written as

L(�|y) = 1√
(2�)n|S|

exp
(

−1
2

uT S−1u
)

(2)

where u = y − m(�). Taking the logarithm of L(�|y) and leaving out
constants that do not affect the location of the maximum results in
the objective function

Q (�) = uT Wu (3)

Q (�) =
n∑

i=1

wi(yi − m(x)i)
2 (4)

where W = S−1
W = diag(w1, w2, . . .,  wn) and m(x)i is the i-th com-

ponent of the model output m(x). Hence maximizing L(�|y) is
equivalent to minimizing Q(�) and the parameter estimate �̂ gets
now determined through

�̂ = argmin
�∈�

Q (�) (5)

The first question that arises is, how to assign values to the weights
wi, if the variances in the observation data are unknown before-
hand? Generally little is known about the distribution of measuring
error in ecological settings, albeit the use of the normal distribu-
tion is often justified from either the central limit theorem or as
an approximative distribution. The situation gets more difficult, if
one is trying to calibrate a model against different types of data,
like stem-diameter-distribution, basal area or biomass. Also sub-
jective requirements of the modeller may  play an important role,
like robustness (Huber, 2011) of the estimates or the minimization
of a certain goodness of fit measure.

If nothing is known about the variances a method known as IRLS
(iteratively recursive least squares) is applicable (Green, 1984). As
an iterative procedure one starts with constant weights which get
successively refined after each calibration step until the estimated
parameters eventually converge. The refinement is based on the
residuals where, in its simplest form, the squared residuals uTu of
one estimation step serve as inverse weights for the next step. It can
be shown that this results in the highest likelihood for the likelihood
function (Eq. (2)).

Following such an approach multiple full calibration steps are
needed, which are time consuming and impractical for the here
considered case of complex models.

A simpler approach is to assume an existing functional relation-
ship like wi = |yi|−� with � ≥ 0 between the observations and the
weights. Three values for � are frequently adopted. For � = 0 we  have
the case of constant variance, which is often assumed or acceptable
to use after a suitable transformation (e.g. Box and Cox (1964)). For
Poisson distributed field data with large rate parameter � (>10),
� = 1 serves as an good approximation. In Van Oijen et al. (2005,
2013) � = 2 is used, which implies that the standard deviation of
the errors are proportional to the observations.

The second question is how to find the minimum of Q? Tra-
ditional nonlinear optimization algorithms like gradient descent

or quasi Newton methods are only local search methods which
additionally rely on the ability of computing first and/or second-
order derivatives. The first property enforces one to make multiple
optimization trials for multimodal problems and the second one
is impractical due to the need for additional costly model evalua-
tions. Hence we  use a set of randomized search methods which do
not exhibit the mentioned problems and do not take much effort
to be implemented in an appropriate programming language.

• Adaptive Simulated Annealing (ASA): A parameter-free variant
of the well known simulated annealing algorithm (Kirkpatrick,
1984). In contrast to the original annealing algorithm, a candidate
solution gets sampled from a cauchy distribution and the cool-
ing schedule is adapted to a fixed number of allowable function
evaluations (Ingber, 1993, 1996).

• Dynamically dimensioned search (DDS): A simple algorithm orig-
inally developed for the calibration of watershed models, where
a random candidate solution is drawn around the current best
solution with the search radius r being the only free parameter.
Through the successive reduction of the number of simulta-
neously perturbed parameters, DDS is also efficient for high
dimensional problems (Tolson and Shoemaker, 2007).

• Adaptive Differential Evolution (JADE): An improved variant of
the population based differential evolution algorithm (Storn and
Price, 1997). Except the population size NP all other parameters
are adjusted dynamically to the problem (Zhang and Sanderson,
2009).

2.3. General calibration procedure

Under the assumption of an existing simulation model the gen-
eral calibration procedure is as follows:

First individual parameter ranges define the parameter space �,
including expert knowledge regarding the ecological meaningful-
ness. An error model is specified according to available observation
data or suitable assumptions about the error distribution. A ran-
dom candidate solution � ∈ � is sampled from the parameter space,
its objective function value Q(�) is evaluated and successively
improved through one of the stochastic search methods (Sec-
tion 2.2) until a maximum number of simulations is reached.

For further analyses the determined maximum likelihood esti-
mate �̂ can be used to access uncertainty and identifiability
properties. Either by estimating confidence intervals for �̂ and the
prediction m(�̂), which requires a numerical approximation of the
Jacobian at �̂, or by estimating profile likelihoods using multiple
calibration trials. See Appendix A for a detailed description and
Appendix B for the proper handling of identifiability issues.

For selecting a model from a set of candidate models we use the
Akaike information criterion (AIC) (Appendix C).

2.4. Modelling the dynamics of tropical forest

For modelling the dynamics of tropical forest we use a size-
structured Sinko–Streifer model (Muller-Landau et al., 2006;
Kohyama, 1991; Condit et al., 1998; Moorcroft et al., 2001). Let ni(t,
x) (cm−1 m−2) be the number of trees per area of species i at time
t with a diameter at breast height (DBH) of x cm. The time evo-
lution of species i is then described through the following partial
differential equation (PDE):

∂ni(t, x)
∂t

= −∂gi(t, x)ni(t, x)
∂x

− mi(t, x)ni(t, x) (6)

With the boundary conditions ni(0, x) = 0 cm−1 m−2 and ni(t, x0)gi(t,
x0) = ri(t), which implies that we  start with fallow land and assume
a seedling input rate at the smallest stem diameter x0 from outside.
Where gi(t, x) (cm a−1) is the stem diameter grow function, mi(t, x)
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