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A B S T R A C T

We have developed a mechanistic model of aquatic microbial metabolism and growth, where we apply
fundamental ecological theory to simulate the simultaneous influence of multiple potential metabolic
reactions on system biogeochemistry. Software design was based on an anticipated cycle of adaptive
hypothesis testing, requiring that the model implementation be highly modular, quickly extensible, and
easily coupled with hydrologic models in a shared state space. Model testing scenarios were designed to
assess the potential for competition over dissolved organic carbon, oxygen, and inorganic nitrogen in
simulated batch reactors. Test results demonstrated that the model appropriately weights metabolic
processes according to the amount of chemical energy available in the associated biochemical reactions,
and results also demonstrated how simulated carbon, nitrogen, and sulfur dynamics were influenced by
simultaneous microbial competition for multiple resources. This effort contributes an approach to
generalized modeling of microbial metabolism that will be useful for a theoretically and mechanistically
principled approach to biogeochemical analysis.
ã 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Aquatic ecosystems are currently subject to complex changes in
external forcing due to changes in land use (Allan, 2004) and
climate (Poff et al., 2002). In light of these multivariate changes,
empirical data and assumptions of temporal stationarity (in the
sense of Milly et al., 2008) are an insufficient basis for
understanding the potential biogeochemical trajectories of these
ecosystems. Furthermore, empirical work alone may reveal little
about feedback effects (Stone and Weisburd, 1992; Singh et al.,
2010) that may ultimately cause non-linear or discontinuous

system behavior. Therefore, mechanistic simulation models of
microbial metabolism are critical to understand the potential
changes in aquatic biogeochemical cycles that may emerge from
novel and dynamic mixtures of available metabolic reactants.

Use of thermodynamic theory in biogeochemical models relies
on a non-equilibrium perspective (Schrödinger, 1944) of microbial
metabolism. More specifically, accumulation of microbial biomass
requires that the system must be far from equilibrium (Jørgensen
et al., 1992), conservative of mass and energy (Patten et al., 1997),
dissipative in the generation of entropy from available energy
(Straškraba et al., 1999), and open to external sources and sinks of
energy and matter (Jørgensen et al., 1999). This perspective
assumes that microbial metabolism is inherently adapted to a state
of disequilibrium, because the structure and function of a
microbial assemblage is sustained by exergy (energy capable of
work) provided by external factors (e.g., incoming solar or
chemical energy). Starting from this premise, the non-equilibrium
thermodynamic theory of ecology has led to several proposed goal
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functions that lead to the emergence of system complexity from
imposed exergy sources (Fath et al., 2001). These goal functions
include: maximum dissipation potential (Schneider and Kay,
1994), maximum exergy storage (Jørgensen et al., 2000), and
maximum entropy production (Vallino, 2010). A model that
maximizes microbial biomass using the available chemical
potential is generally consistent with these goal functions, and
provides a method by which thermodynamic ecological theory can
be applied to (and tested by) field or lab studies of biogeochemical
dynamics driven by microbial metabolism (Jessup et al., 2004;
Prosser et al., 2007; Hall et al., 2011).

A non-equilibrium perspective alone would suggest that an
appropriate metabolic model would be strictly rate-limited by
kinetics, as opposed to equilibrium-limited, and the potential for
kinetic drivers to control rates of metabolic activity is, indeed, an
important consideration for any biochemical system. However, a
generalized metabolic model also requires simulation of the effects
of microbial competition for resources (Kalyuzhnyi and Fedor-
ovich, 1998; Cherif and Loreau, 2007; van de Leemput et al., 2011).
For example, a strictly rate-limited model for each heterotrophic
metabolic reaction would predict that all terminal electron
acceptors (TEAs) used for oxidizing dissolved organic carbon
(DOC) would be consumed simultaneously, according to the
relative magnitude of each predicted reaction rate. But in reality,
exclusive separation of TEA consumption is commonly observed
over space and time when chemical energy in the form of DOC is
limiting (Hedin et al., 1998; Tesoriero et al., 2000; Zarnetske et al.,
2011). This separation is typically attributed to competition for
DOC among microbes capable of different heterotrophic metabolic
pathways (e.g., aerobic respiration, denitrification, or sulfate
reduction), and thermodynamic principles predict that microbes
capable of higher energy-yielding metabolic reactions outcompete
those capable of lower yielding reactions (Hedin et al., 1998).
Therefore, we suggest that an effective generalized model of
biogeochemistry should account for the potential occurrence of
both kinetic and thermodynamic drivers (Jin and Bethke, 2003).
Our use of the term “thermodynamic driver” does not refer to the
more conventional definition of a system limited by reaching
equilibrium, which would require death or dormancy for all life
inhabiting that system (Schrödinger, 1944). Here, thermodynamic
driver refers to an optimization algorithm that selects the
metabolic processes that use the highest available energy yields
from the available biochemical reactions.

The requirements for computer software supporting both our
current and future modeling efforts are driven by the scientific
needs of an adaptive hypothesis testing cycle. To initiate the cycle, a
modular model that can be easily extended is constructed with a
foundational set of hypotheses representing maximum parsimony.
We define maximum parsimony as the simplest mechanistic
explanation for a given set of observations. The initial model is
configured and parameterized to simulate behavior of a real study
system under a given experimental scenario. Comparison of the
simulation with observations from the study system suggest how
hypotheses encapsulated within the model need to be adapted to
explain residual error. To maintain parsimony, complexity is added
to the model only when it explains a statistically significant portion
of the residual error. Further statistical analyses with the adapted
model can then be used to suggest optimal designs for future
laboratory or field experimentation, thus starting the next iteration
of the cycle.

Here, we present a model framework designed to initiate this
cyclic and adaptive approach for an assessment of biogeochemical
trajectories of aquatic microbial ecosystems. Our objective was to
develop an extensible biogeochemical modeling tool based on the
metabolism of aquatic microbial assemblages, where the applica-
tion of thermodynamic, kinetic, and stoichiometric theory is

generalized to a level appropriate for simulating whole-system
solute dynamics. We demonstrate a version of the model that
incorporates the minimum conceptual complexity (or maximum
parsimony) necessary to simulate system behavior that is
consistent with modern thermodynamic and stoichiometric
interpretations of microbially driven biogeochemistry.

2. Model description

Many models of microbial metabolism and growth have been
based on some combination of thermodynamic, stoichiometric,
and kinetic principles (Menkel and Knights, 1995; Vallino et al.,
1996; Jin and Bethke, 2003; Franklin et al., 2011; van de Leemput
et al., 2011). We build on these examples with a model
implementation that has sufficient extensibility to be used in
hypothesis testing against data from the typical aquatic ecosys-
tem field or lab study. We designed a model where the suite of
potential biogeochemical reactions was configurable at run time,
allowing the researcher to define the appropriate simulation for a
particular system or particular hypothesis of interest (similar to
Flynn (2001)). The code was implemented in a highly modular,
object-oriented framework for the purposes of (1) facilitating
implementation of code to address new hypotheses that may
arise from continued field and lab studies, and (2) allowing future
integration with a hydrologic model to simulate physical
transport of solutes.

We implemented the microbial ecosystem model using the
Network Exchange Objects (NEO) modeling framework (Izurieta
et al., 2012), coded in Java (v. 1.7, Oracle Corporation, Redwood
Shores, California, USA). Critical NEO features include: (1) a shared
name space for state variables within node and link objects based
on a network-based data structure and (2) a dependency manager
that automatically determines the appropriate execution order for
calculating the new values for each state during a simulation time
step. In this fashion, the NEO framework is designed to integrate
the results of a collection of relatively simple individual
calculations, in order to simulate the relatively complicated
emergent interactions that may occur in the ecosystem.

We defined a functional unit of the microbial ecosystem with
three nodes, where each node represents a particular physical
location or conceptual structural component of the ecosystem
(Fig. 1). The characteristics of these nodes are similar to model
compartments proposed by Franklin et al. (2011), though less
detailed in their ability to track variation of biomass stoichiometry.
The nodes track the storage of compounds in various locations or
forms, including: (1) the aqueous node, which tracks the amount
and concentration of each simulated compound in the aqueous
environment; (2) the biologically available node, which tracks the
amounts of compounds that are in immediate proximity with
enzymes driving metabolic processes; and (3) the biomass node,
which tracks the amounts of elements that comprise living
biomass (in this case, C and N).

NEO code is highly modular, where classes are organized within
specific “behavior packages” that each define how a specific
compound will behave in a given type of node or link. Model
boundary conditions are implemented as one-sided links (hence-
forth called “boundary links”) that conceptually tie a single node to
the exterior of the model domain. In this fashion, we describe how
compounds and elements are moved and transformed within the
microbial ecosystem by describing the general “behavior” of
compounds in a given two-sided link between nodes, and we
define the relationship between the ecosystem and external
entities (e.g., driving data, compound source/sinks, etc.) by
describing the behavior of compounds in one-sided boundary
links connected to a single node.
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