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a  b  s  t  r  a  c  t

Data  of rare  species  usually  contain  a high  percentage  of zero  observations  due  to their  low  abundance.
Such  data  are generally  referred  as zero-inflated  data. Modeling  spatial  patterns  in  such  data  has  been
challenging,  especially  when  large  datasets  are involved  and  intensive  computing  are required.  The
eigenfunction-based  spatial  filtering  provides  a  flexible  tool  that  allows  the  existing  modeling  approaches
that  can  handle  zero-inflated  data  such  as  the  delta  model  to be  applied  in  the  presence  of  spatial
dependence.  With  a real  dataset,  the  longline  seabird  bycatch  data,  the present  study  demonstrated
a  modification  of  delta  model  with  the spatial  filters  to  investigate  spatial  patterns  in  zero-inflated  data
for rare species.  We  explored  a total  of  108 spatial  weighting  matrices,  and  modified  the  delta  model  by
incorporating  the  spatial  filters  generated  from  the  best  spatial  weighting  matrix.  We  applied  the  five-fold
cross-validation  to compare  performance  of the  modified  delta  model  with  other  three  candidate  models
based on  the  mean  absolute  error  and  the mean  bias. The  three  candidate  models  included  the  baseline
model  without  spatial  dependence  considered,  the trend-surface  generalized  additive  model  and  the  ran-
dom  areal  effect  model.  The  delta  model  modified  with spatial  filters  showed  superior  performance  over
the other  three  candidate  models  in the seabird  bycatch  example.  With  the seabird  bycatch  example,  we
illustrated  a  modification  of  delta  model  with  the  eigenfunction-based  spatial  filters  to  investigate  spatial
patterns.  This  study  provides  an  alternative  to incorporate  spatial  dependence  in the  existing  approaches
for modeling  spatial  patterns  in  zero-inflated  data  for  rare species.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Data of rare species are usually characterized by a high per-
centage of zero observations due to their low abundance. Such
data are generally referred as zero-inflated data. The excess zeros
may  invalidate the normality assumption that we commonly use
in ecological data analyses and may  cause computational problems
(Cunningham and Lindenmayer, 2005). Ignoring a considerable
proportion of zeros or merging multiple records would likely result
in a loss of information that reflects the spatial or temporal distri-
bution characteristics of the species. Ignoring the spatial patterns
that are likely to exist may  also cause bias in estimation because
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the assumption of independence among observations is violated.
Therefore, analysis of such data requires specialized statistical tech-
nics, and it is quite challenging to incorporate spatial patterns in the
analysis. Because rare species are frequently of ecological, conser-
vation or management interest, development of appropriate mod-
els for such data may  provide valuable information for management
and conservation of rare species, e.g., to help identify hotspots of
bycatch events or provide guidance for habitat restoration.

Several modeling approaches have been developed to deal with
zero-inflated data. In these approaches, the non-zero data and zero
data are handled either in two separate sub-models (e.g., the delta
model or hurdle model: Pennington, 1983; Lo et al., 1992; Fletcher
et al., 2005 and the zero-inflated model: Welsh et al., 1996; Hall,
2000; Minami et al., 2007), or simultaneously in a single model (e.g.,
the Tweedie distribution model: Tweedie, 1984 and the classifica-
tion tree model: Li and Jiao, 2011b). Given these existing modeling
approaches, we  are left with the question of how to incorporate
spatial dependence in these approaches.
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An early example of incorporating spatial patterns in the
traditional regression model is the trend-surface analysis. The
trend-surface analysis models the spatial patterns using polyno-
mial terms of geographic coordinates (Legendre, 1990; Borcard
et al., 2011). This method is devised to capture broad-scale
spatial patterns with simple shapes like planes, saddles or parabo-
las, but insufficient to capture fine-scale structures that may
require too many parameters to estimate (Borcard and Legendre,
2002). Another major problem with the trend-surface analysis
is the correlation inherent in those polynomial terms, which
may  cause bias in parameter estimation and statistical testing;
although this problem can be minimized by orthogonalizing the
polynomial terms, difficulties may  arise for interpretation and
prediction.

The eigenfunction-based spatial filtering provides an alter-
native. The principal coordinates of neighbor matrices (PCNM)
proposed by Borcard and Legendre (2002) is one of the commonly
used eigenfunction-based spatial filtering methods. The Moran’s
Eigenvector Maps (MEM)  is a generalization of PCNM by Dray
et al. (2006). To apply the eigenfunction-based spatial filtering,
a spatial weighting matrix is constructed based on the relation-
ship between each pair of locations: whether they are neighbors
and how strong their dependence is given that they are neighbors.
The spatial dependence between two locations could be assumed
to be a function of their Euclidean distance. The eigenvalues and
their associated eigenvectors of a centered spatial weighting matrix
constitute the eigenfunction. These eigenvectors (called the spa-
tial filters hereafter) are believed to describe all the possible
spatial patterns among sampling locations, where the spatial fil-
ters associated with larger eigenvalues represent broader-scale
variation and those associated with smaller eigenvalues repre-
sent finer-scale variation. The spatial filters can further be used
as explanatory variables in the traditional regression model. The
eigenfunction-based spatial filtering has been used with success
in several ecological applications (Borcard and Legendre, 2002;
Diniz-Filho and Bini, 2005; Dray et al., 2006; Griffith and Peres-
Neto, 2006; Borcard et al., 2011). Its advantages may  include the
flexibility in conjunction with the regression model framework,
less demand for computation for large datasets and the capabil-
ity of capturing both large- and fine-scale variations. Therefore,
we were motivated to modify existing modeling approaches that
handle zero-inflated data with eigenfunction-based spatial fil-
ters, and are hoping this modification may  provide an alternative
to incorporate spatial dependence in the data analysis for rare
species.

In the present study, we demonstrated such a modification on
the delta model. Delta model, also called hurdle model is devel-
oped on the basis of delta distribution to deal excess zeros in data
analyses. Delta model and zero-inflated model are similar in that
they both model zero and non-zero data in two separate sub-
models. Their difference lies in the sub-model that handles zero
data, called the probability sub-model, which models all zeros in
the delta model while models part of the zeros in the zero-inflated
model. Although in this study, we adopted the delta model as an
example to demonstrate the modification with spatial filters for
zero-inflated data, the methodology can also be applied to other
modeling approaches such as the zero-inflated model.

The overall goal of this study was to demonstrate the modifica-
tion of existing models with eigenfunction-based spatial filters to
explore spatial patterns in zero-inflated data for rare species using
the example of modified delta model fitted to a real dataset, the
longline seabird bycatch observer data. Specifically, we aimed to (1)
extract spatial filters from appropriate spatial weighting matrices;
(2) modify the delta model by incorporating these spatial filters; (3)
compare the performance of the modified delta model with other
commonly used modeling approaches.

2. Materials and methods

2.1. Delta model

We  applied the delta model as an example to deal with zero-
inflated data for rare species. The delta model consists of two  sub-
models, one sub-model (positive sub-model) to analyze positive
data, and the other one (probability sub-model) to estimate the
probability of obtaining positive data. Product of the estimates from
these two sub-models gives the final estimates:

ĉ = d̂  × p̂, (1)

where d̂ is the estimated value when only the positive data are ana-
lyzed, p̂ is the estimated probability of obtaining positive data, and
ĉ is the final estimates from the delta model. For the positive sub-
model, a generalized linear model was applied where we assumed
a certain statistical distribution (e.g., a normal distribution) and a
link function (e.g., an identity link) for the positive data:

g
(

d̂
)

= ˇ0 +
∑

ˇqXq, (2)

where ˇ0 is the intercept; ˇq is the coefficient for the qth explana-
tory variable Xq, and g(.) is the link function. In the probability
sub-model, the data was  converted into the presence/absence data
(y) that takes a value of one for those positive observations and
a value of zero otherwise. A generalized linear model with an
assumption of binomial distribution and a logit link function was
used as the probability sub-model:

ln

(
p̂

1 − p̂

)
= ˛0 +

∑
˛qXq, (3)

where ˛0 is the intercept; ˛q is the coefficient for the qth explana-
tory variable Xq.

The explanatory variables were selected through a stepwise
approach based on the Akaike Information Criterion (AIC) and a chi-
square test (Burnham and Anderson, 2002). Model development
started with a model only including an intercept. At each step of the
stepwise selection, the variable that reduced the AIC value most or
showed the most significant effects on the response variable was
selected into the model. We repeated this step until no substantial
improvement was obtained from including an additional variable.
Two-way interactions were not included in the models because
they were either insignificant or correlated with main factors.

2.2. Eigenfunction-based spatial filters and the modified delta
model

The spatial filters were obtained by calculating the eigenvec-
tors and eigenvalues of the n × n spatial weighting matrix W = [wij]
after centering, where i and j index the ith and jth locations and
n is the total number of locations of the observations (Dray et al.,
2006; Griffith and Peres-Neto, 2006). The spatial weighting matrix
can be seen as the Hadamard product (element-wise product)
of a connectivity matrix B = [bij] by a weighting function matrix
A = [aij], i.e., [wij] = [bij aij] (Dray et al., 2006). Elements of the con-
nectivity matrix B take a value of one for two locations that are
neighbors (i.e., connected) and zero otherwise. We constructed five
connectivity matrices for comparison, including the distance-based
neighborhood based on minimum spanning tree and the one based
on semivariogram range, the Delaunay triangulation, the Gabriel
graph and the relative neighborhood graph. The last three were
based on topology. Details on constructing these five connectivity
matrices are provided in Appendix S1, and the technics can refer
to Toussaint (1980), Lee and Schachter (1980), and Jaromczyk and
Toussaint (1992).
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