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a  b  s  t  r  a  c  t

Taylor’s  power  law  describes  an  empirical  relationship  between  the mean  and  variance  of  population
densities  in  field  data,  in which  the  variance  varies  as  a power,  b, of  the  mean.  Most  studies  report
values  of b  varying  between  1 and  2.  However,  Cohen  (2014a)  showed  recently  that  smooth  changes
in  environmental  conditions  in  a model  can  lead  to  an  abrupt,  infinite  change  in b.  To  understand  what
factors  can  influence  the  occurrence  of an  abrupt  change  in b,  we used  both  mathematical  analysis  and
Monte Carlo  samples  from  a model  in  which  populations  of the same  species  settled  on  patches,  and
each  population  followed  independently  a stochastic  linear  birth-and-death  process.  We  investigated
how  the  power  relationship  responds  to  a smooth  change  of  population  growth  rate,  under  different
sampling  strategies,  initial  population  density,  and  population  age.  We  showed  analytically  that,  if the
initial  populations  differ  only  in  density,  and  samples  are taken  from  all patches  after  the  same  time  period
following  a  major  invasion  event,  Taylor’s  law  holds  with  exponent  b =  1, regardless  of the population
growth  rate.  If  samples  are  taken  at different  times  from  patches  that  have  the  same  initial  population
densities,  we  calculate  an  abrupt  shift  of  b, as  predicted  by  Cohen  (2014a). The  loss  of linearity  between
log  variance  and  log mean  is  a  leading  indicator  of  the  abrupt  shift.  If both  initial  population  densities  and
population  ages  vary  among  patches,  estimates  of  b lie  between  1  and  2, as in most  empirical  studies.  But
the  value  of  b  declines  to ∼1 as the system  approaches  a  critical  point.  Our  results can  inform  empirical
studies  that  might  be  designed  to demonstrate  an  abrupt  shift  in  Taylor’s  law.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Taylor’s power law (Taylor, 1961; Taylor et al., 1978, 1980) is a
relationship between the mean and variance of population density
that has been found in empirical studies. According to this law, the
variance is a power, b, of the mean; that is, Var(N(t)) = a[E(N(t))]b,
where E(N(t)) is the mean and Var(N(t)) is the variance of population
density N(t). Empirical values of b are usually between 1 and 2. A
number of explanations have been offered for this empirical law
(e.g., Gillis et al., 1986; Kilpatrick and Ives, 2003; Kendal, 2004),
some of which have been reviewed by Engen et al. (2008). The law
has been found to extend far beyond the ecology, where it was first
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discovered; it describes data from many areas of biology, physics,
and the stock market (Eisler et al., 2008).

Taylor’s law has multiple forms, depending on the sampling
schemes in a space-time diagram (Fig. 1). Assume there are K
patches of distinct populations, where each population is cen-
sused at L points in time (referred to as population ages in this
paper). The form of Taylor’s law depends on how one calculates
means and variances of population density. For a temporal Tay-
lor’s law, one calculates, separately for each of K patches, ln(mean)
and ln(variance) as a point for each row (across time), resulting
in K points. Then the K points are plotted to produce a relation-
ship of ln(variance) vs. ln(mean), as in Kilpatrick and Ives (2003).
For a spatial Taylor’s law, one calculates, separately for each of L
times, ln(mean) and ln(variance) for each column (across space).
The resulting L points are then plotted, as in Taylor et al. (1978,
1980). A hierarchical spatial Taylor’s law calculates ln(mean) and
ln(variance) over subplots within a patch at particular time (within
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Fig. 1. A space–time diagram shows K patches (rows) of distinct populations cen-
sused at L points in time (columns) arranged in a K by L matrix. Population densities
are  represented as proportional to the size of gray circles, and population ages are
represented as the distance from the initial time, which is show in the left column.

one single circle in Fig. 1). Then K points from all the patches are
plotted to examine the variance–mean relationship. In some lab
experiments, i.e., Petri dishes of bacteria, the “subplots” are repli-
cates and “patches” are treatments or plate environments (Kaltz
et al., 2012; Ramsayer et al., 2012). In these experiments the popu-
lations are usually controlled to have the same population age at
the end of experiments (the last column in the K by L matrix). How-
ever, in field surveys, i.e., plots of trees, one may  lack information on
population age, even though the plots are surveyed in the same year
(Cohen et al., 2012). In these cases, the sampling scheme is anal-
ogous to picking one time of observation for each row (patch) in
the space-time diagram, i.e., as indicated by the illustrative Roman
numerals in Fig. 1. The combined effects of different initial popula-
tion densities and population ages on Taylor’s law have apparently
not been investigated previously.

Cohen (2014a) recently found an abrupt transition in the expo-
nent b of Taylor’s power law in a model that follows the growth
of a single population in a stochastic environment. Specifically,
he modeled varying environmental conditions (climate) with a
two-state, discrete-time Markov chain in which the states repre-
sent weather conditions and in which different levels of temporal
autocorrelation of weather conditions from one day to the next
represent different climates. One state of weather causes popu-
lation growth and the other state of weather causes reductions
in population density. By assuming discrete multiplicative pop-
ulation growth with any finite number of states, Cohen (2014b)
derived analytically a long-term rate of change in mean density
and variance in the Markovian stochastic environment. The slope
b of Taylor’s law in log–log form is thus a function of the transition
probabilities in the Markovian transition matrix, by which tempo-
ral autocorrelation could be tuned. The change in b in response to
changes of the autocorrelation was computed numerically from the
analytical formulas.

What is remarkable about the model is that, under certain condi-
tions for the average multiplicative growth factor, when the climate
is changed smoothly by gradually increasing the level of autocor-
relation, at a certain point b undergoes an abrupt singularity in
response. Although b stays close to 2 over most of the range of
autocorrelation values, near the singularity it increases towards
infinity, followed by a jump to an infinitely negative value, and then
returns towards 2 as the autocorrelation parameter increases fur-
ther beyond where the singularity occurs. Cohen (2014a) provides

mathematical details and discussion of the general circumstances
under which this sort of shift might occur.

This appears to be the first finding of a possible dramatic shift
in Taylor’s law. Cohen’s (2014a) paper raises questions about the
nature of the singularity that emerged in his model. Does this singu-
larity appear for a smoothly changing environment in other types of
models? Is the singularity something that may be noticed in empir-
ical data? Does the appearance of the singularity depend on how
sampling is done? Under what circumstances in nature might the
singularity occur? Does it have ecological consequences?

One of many alternatives to Cohen’s Markovian multiplicative
model, the linear birth-and-death model, was used by Anderson
et al. (1982) to show that Taylor’s law holds as a result of the
natural demographic stochastic processes of individual births and
deaths. Their simulations did not reveal the singularity found by
Cohen (2014a). In the setting of the linear birth-and-death model,
we examine here whether and under what conditions Taylor’s law
experiences abrupt change (singularity) in response to a smoothly
changing environment as predicted by Cohen’s model. We  are
interested in how differences in population age and initial den-
sity, which affect the final range of mean population density, can
affect the occurrence of abrupt transition. Our approach is through
mathematical analysis and simulations aimed at exploring possible
implications for field studies.

2. Model analysis

The linear birth-and-death process assumes that each individual
in a population has a probability ��t of giving birth to one offspring
and a probability ��t of dying in each small interval of time, �t.
The difference, �–�, is the intrinsic rate of growth per individual
of the population. Each individual is assumed to be independent
of all others. Let N(t) be the integer-valued random variable that
gives the density of a population in the birth-and-death model at t.
The population density is measured in whole numbers of individ-
uals, not in arbitrary positive real numbers, unlike the Markovian
multiplicative model in Cohen (2014a,b). The expected population
density at time t of a population with constant initial density N0 at
time 0 is

E(N(t)) = N0e(�−�)t (1)

and the variance is

Var(N(t)) = N0
� + �

� − �
e(�−�)t(e(�−�)t − 1) if � /= � (2a)

Var(N(t)) = 2N0�t if � = � (2b)

(Pielou, 1977). In the birth-and-death model, the probabilities of
births and deaths are density independent, so that if � /= �,  as time
goes to infinity, the average population goes either to infinity or to
zero.

Cohen (2014b) demonstrated for this linear birth-and-death
process that, if � > �, then as t → ∞,  a spatial Taylor’s law holds with
b = 2, whereas, if � < �, as t → ∞,  a spatial Taylor’s law holds with
b = 1. If � = �, then b is not defined. (He also demonstrated a similar
abrupt transition in b for the Galton–Watson branching process.)
Cohen (2014b) did not estimate the exponent, b, for finite time
periods t and he assumed all populations start with same initial
population density N0.

Our objective is to investigate the behavior of the birth-and-
death model for finite time periods and with varying initial
population densities, to relate model results more closely to
what will be encountered in field studies. First, following Cohen
(2013, p. 95, his Eq. (7)), we approximated a “transient” value
of b = b(t) at a finite time t as the slope of the line tangent to
the curve of ln Var(N(t)) as a function of ln E(N(t)), or explicitly
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