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a  b  s  t  r  a  c  t

Timing  phenomena  are  integral  to  many  ecological  processes  but are  difficult  to  analyze  due  to the
unique  nature  of  timing  data  and  because  environmental  conditions  and  behavior  can  vary  during  the
observation  period.  We  demonstrated  methods,  based  on parametric  hazard-rate  modeling,  to analyze
“time-to-event”  data  under  time-varying  conditions.  We  developed  routines  in R to  apply  parametric
models,  based  on the  exponential,  Weibull,  and  modified  Weibull  distributions,  to time-to-event  data.  We
applied  the  models  to data  on the  time  for  migrating  adult salmonids  to  successfully  pass  a hydroelectric
dam.  The  model  captured  pronounced  diel behavior  and the  effects  of  time-varying  covariates  river  flow,
spill,  and  water  temperature  on  passage  times. The  methods  we  demonstrated  have  potential  application
to  a broad  range  of  ecological  questions.

Published by Elsevier B.V.

1. Introduction

The timing and duration of events plays a key role in countless
ecological processes. Examples of event times are time to insect vis-
itation at a flower (Muenchow, 1986), duration of tarantula fighting
times (Moya-Larano and Wise, 2000), time to establishment for an
introduced population (Sahlin et al., 2010), and survival (Anderson,
2000). Typically, event times vary within a population, with the
distribution determined by genetic, phenotypic, and environmen-
tal variability, and ecological interactions. Further, behavior can
vary during the observation period due to varying endogenous and
exogenous factors, and this can influence the timing of events.
Understanding the mechanisms underlying timing phenomena
is paramount to understanding the ecology of timing. However,
basic linear regression methods are not well suited for analyz-
ing “time-to-event” data (Hosmer and Lemeshow, 1999), because
they typically reduce response and predictor variables to means or
medians, thus potentially losing valuable information. In addition,
these data are often skewed and can contain “censored” individuals
that were not observed to complete the event, which can further
complicate analyses.

Time-to-event data are directly analogous to survival time data,
however, and epidemiologists have developed powerful methods
to analyze this type of data (Cox, 1972; Hosmer and Lemeshow,
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1999; Kalbfleish and Prentice, 1980). Survival analysis examines
the entire distribution of event times and incorporates censored
individuals into the analysis, which eliminates a potential source
of bias. Several ecologists have applied survival or “time-to-event”
analysis to a range of event types, considering how event times vary
in relation to factors such as sex or initial environmental condi-
tions (e.g., Moya-Larano and Wise, 2000; Muenchow, 1986; Sahlin
et al., 2010). However, these applications assumed that explana-
tory covariates, and consequently behavior, remained constant
throughout the observation period. In natural populations, condi-
tions vary over time, and this variability can influence the timing
of events. Thus another powerful feature of time-to-event analysis
is the capability to incorporate time-varying covariates.

In epidemiological studies, the Cox Proportional Hazards (CPH)
model has received vast majority applications in survival stud-
ies (Carroll, 2003). CPH models are considered “semi-parametric”
because the baseline survivorship function is not specified, but the
effects of covariates are fully parameterized. The goal of most of
these studies is to demonstrate that a particular factor has a propor-
tionate effect on survival, with this effect expressed as an odds ratio.
This type of information is important for survival studies, but we
contend that ecologists are often more interested in how covariates
affect the duration of events, and predicting this response is poten-
tially more precise with a parametric model such as the Weibull
model. A further advantage of parametric models is that by com-
paring alternative forms of the baseline survivorship function in a
model comparison analysis, we can get a better understanding of
fundamental process that underlie the temporal process of interest.
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Because parametric models have not been as popular as CPH
models, the use of time varying covariates with parametric models
has not been fully supported in many statistical packages, includ-
ing SAS. We  developed routines in R (R Development Core Team,
2008) to fit several parametric survival models to data, and we
provide the code as an appendix to this paper. Accordingly, the
goal of this paper is to present methods for conducting paramet-
ric time-to-event models incorporating time-dependent covariates
for ecological field studies.

We apply these methods to migration times of adult Pacific
salmonids (Oncorynchus spp.). Fish migrating in rivers must
frequently overcome barriers, both natural and man-made (Castro-
Santos, 2005). In the Columbia River in the northwestern U.S.,
hydroelectric dams form barriers to upstream migrating fish
populations, and the overall impacts of dams are considered an
important factor in leading to the decline of salmon populations
(National Research Council, 1996) and their subsequent listing
under the US Endangered Species Act. Fish ladders are provided for
upstream passage, but delays are associated with fish locating these
ladders (Caudill et al., 2007; Zabel et al., 2008). Fish can expend con-
siderable energy passing dams, and delays can lead to decreased
migration success (Caudill et al., 2007). Therefore, we developed
models to relate the time it takes individuals to successfully locate
and successfully pass fish ladders to a suite of factors.

2. Methods

Time-to-event modeling. First we define T as a random variable
representing times to an event and ti as the observed time for the
ith individual. We  designate individuals not observed to complete
the event, either because they were lost or did not complete the
event by the end of the study, as censored, with ci representing their
last observation time. These “right-censored” individuals contain
important information that contributes to the estimation of pas-
sage rates (Hosmer and Lemeshow, 1999) and therefore must be
included in statistical analyses.

The survivorship function, S(t), is the probability of the event
not occurring before t days, or S(t) = P(T > t). To visualize this func-
tion, we used the product limit, or Kaplan–Meier method (Hosmer
and Lemeshow, 1999; Kalbfleish and Prentice, 1980) using the
“survival” package in R (R Development Core Team, 2008), which
estimates S(t) based on both observed and censored individuals.

The fundamental feature of time-to-event modeling is the haz-
ard function, h(t), which is the conditional probability that the event
will occur during the next short time increment, given that it has
not occurred yet (Castro-Santos and Haro, 2003; Ross, 1993):

h(t) = lim
�t→0

Pr(t ≤ T < t + �t|T ≥ t)
�t

.  (1)

The hazard function can vary across time in response to varying
environmental conditions or behavior, but most ecological studies
have not utilized this capability. A related function, the cumulative
hazard function, H(t), determines how much hazard an individual
has experienced through time t, and is thus the integration of the
hazard function through time t:

H(t) =
∫ t

0

h(�)d� (2)

where � is a dummy  variable for the integration. The survivorship
function, S(t), is the probability of the event not occurring before t
days, or

S(t) = P(T > t) = exp (−H(t)) (3)

(Hosmer and Lemeshow, 1999). Note that the survivorship function
is simply 1 − F(t), where F(t) is the cumulative distribution function

(cdf). Based on the hazard function, the probability density function
(pdf) of t, f(t), is f(t) = h(t) · S(t). Thus once the hazard function is
specified, all other functions necessary for statistical analyses are
derivable from it.

To relate timing events to covariates, a standard assumption is
that covariates act multiplicatively on a baseline hazard function,
h0(t):

h(t) = h0(t) exp (x′�) (4)

where x is a vector of covariates, and � is a vector of regres-
sion coefficients. This is equivalent to assuming that covariates act
additively on the log hazard and has the desirable property that
the hazard remains positive across all ranges of parameter values.
This assumption forms the foundation of Cox Proportional Hazards
modeling (CPH, Cox, 1972).

In this analysis, we examined three parametric forms for the
baseline hazard function, the exponential, Weibull, and modified
Weibull distributions. The exponential model assumes that the
baseline hazard is constant through time, or h0(t) = �. The Weibull
model is a more flexible model where h0(t) is specified as ˛�˛t˛−1,
and thus

h(t) = h0(t) exp (x′�) = ˛�˛t˛−1 exp (x′�) (5)

If  ̨ = 1, the baseline hazard function reduces to the exponen-
tial function, which will be used here as a null model. If  ̨ < 1,
the hazard function decreases with time (survivorship function
exhibits a type III response), and if  ̨ > 1, it increases with time
(survivorship function exhibits a type I response). A drawback of
the Weibull distribution is that the baseline hazard increases or
decreases monotonically. Therefore, we also tested the modified
Weibull distribution (Lai et al., 2003) that can produce “bathtub”
(or inverted bathtub) shaped hazard distributions. The hazard func-
tion for the modified Weibull distribution is (  ̨ + �t)�˛t˛−1 exp(�t),
which reduces to the regular Weibull distribution when � = 0. We
note that other parametric baseline hazard models, such as the log-
normal, are also commonly used (Allison, 2010; Tableman and Kim,
2004).

Both the CPH and parametric regression models can accommo-
date time-varying covariates. Here we  assume that the covariates
are recorded during discrete time intervals, which need not be
of equal duration. This is a reasonable assumption that reflects
most ecological datasets and makes the calculations below more
tractable. To reflect this assumption, we  converted Eq. (2) to piece-
wise integrals:

H(t) =
n∑

j=1

zj∫

zj−1

h(�)d� =
n∑

j=1

[H0(zj) − H0(zj−1)] exp (x′
j�) (6)

where the zjs delimit the n discrete time periods, with z0 = 0, and
zn = t, xj is the vector of covariates during the jth time interval, and
H0 is the cumulative baseline hazard. The summation on the right
reflects the accumulation of hazard during discrete intervals.

Likelihood function. The likelihood function is expressed in terms
of individuals observed to complete the event (at time ti) and
censored individuals (last observed at time ci). For the censored
individuals, we know that their event time would have been > ci if
they were not censored. Accordingly, for censored individuals, we
include P(T > ci) = S(ci) into the log-likelihood function:

L(�) =
NE∏
i=1

f (ti|�)

NC∏
i=1

f (ci|�) (7)

where NE is the total number of individuals known to complete
the event, NC is the total number of censored individuals, and � is
a vector of model parameters that determine the hazard function.
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