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a  b  s  t  r  a  c  t

The  estimation  of  animal  abundance  is  essential  to understand  population  dynamics,  species  interactions
and  disease  patterns  in populations.  Estimations  of  relative  abundance  classically  are  based  on  a  single
observation  of  several  sites.  In this  case,  the  mapping  of abundance  assumes  that  the probability  of
detecting  an  individual,  hence  the  sampling  rate,  remains  constant  across  the  observed  sites.  In practice,
however,  this  assumption  is often  not  satisfied  as the  sampling  rate  may  fluctuate  between  sites  due  to
random  fluctuations  and/or  fluctuations  associated  with  the  sampling  process,  notably  associated  with
the  characteristics  of  the  site.  It is  therefore  important  to account  for variations  in  detection  probability.
Using  a removal  sampling  design,  we  studied  the performance  of  a Bayesian  approach  to estimate  both
sampling  rates  and abundance  under  the  assumption  of a  closed  population.  The  assumption  of  a  closed
population  often  is weakened  when  the  number  of  successive  samplings  is large.  The  number  of  samplings
has  to  be  limited  and  optimal.  We  therefore  examined  the  minimal  number  of successive  samplings
needed  to achieve  sufficient  statistical  accuracy  while  respecting  underlying  model  assumptions.  Using
the  same  simulations,  we  also compared  the  performance  of  the  Bayesian  approach  to the  performance  of
the frequentist  Hayne  method  based  on  linear  regression.  We  show  that  the  Bayesian  approach  proposed
gives  generally  better  estimations  of  population  size  than  the  Hayne  method.  The  two  methods  give
approximately  the  same  results  for the  estimation  of  sampling  rate.  We  then  studied  the  variability  of
detection  probability  of  Ixodes  ricinus  ticks  sampled  under  several  environmental  conditions  by  using  a
hierarchical  Bayesian  model  with  a random  effect.  The  estimated  sampling  rate �̂c varied  between  33.9%
and  47.4%  for  shrubs  and 53.6%  and  66.7%  for dead  leaves.  The  variability  of  the  sampling  rate  due  to
the  site  decreased  when  the  number  of successive  samplings  considered  in  the  model  increased.  The
variability  was  lower  in dead  leaves  than  shrubs.  This approach  could  be used  routinely  for  ecological  or
epidemiological  studies  of  ticks  and  species  with  comparable  life  histories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The estimation of animal abundance is essential in ecology to
understand fundamental processes, such as population dynamics
and species interactions, as well as in epidemiology to under-
stand and generate disease patterns in populations (Anderson,
1991). In the majority of biological systems, relevant indicators
of abundance are based on count point surveys (Alldredge et al.,
2007) obtained using convenient and calibrated sampling methods
(Anderson, 2001; Pollock et al., 2002). As a part of the population
is often not observable, the probability of detecting an individual
and the sampling rate are both less than 1 (Kery, 2004; Kery and
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Royle, 2010; Pellet and Schmidt, 2005). Consequently, indicators
calculated in this way  only give an index of relative abundance.
These indicators of abundance are implicitly based on the assump-
tion that the sampling rate is constant from site to site (Williams
et al., 2002; Pollock et al., 2002; Royle and Dorazio, 2006). How-
ever, the sampling rate may  depend on environmental conditions,
such as weather, season, sampler and habitats. If this is the case,
considering the sampling rate to be constant leads to confusion
between the variability of the rate and the variability of abundance
(Thompson et al., 1998; MacKenzie and Kendall, 2002). Therefore,
an effort needs to be made to estimate both the abundance and the
sampling rate. The two main sampling methods used to estimate
both abundance and sampling rate are Capture Mark Recapture
(CMR) and removal sampling (RS) (see e.g. Williams et al., 2002;
Thompson et al., 1998). CMR  involves capturing a random sample
of individuals in a population of interest, marking them, and then
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releasing them back into the population. Another sample of individ-
ual from the same population is subsequently recaptured (Williams
et al., 2002). The ratio of unmarked to marked individuals is used
to estimate capture probability and abundance. CMR  is generally
labour intensive (Pollock et al., 2002). Moreover, the capture, mark-
ing and release steps could have an effect on the behaviour of the
marked population (Dodd and Dorazio, 2004), especially in some
species. RS consists of capturing individuals on several occasions
over a short period of time. The captured individuals are removed
from the population (Williams et al., 2002). The total number of
individuals captured over the successive samplings is used to esti-
mate capture probability and abundance. Like CMR, RS is labour
intensive (Dodd and Dorazio, 2004) and may  modify the observed
site when the number of successive samplings is high. The choice
of a given protocol (CMR or RS) and its ease of implementation
depend on the species studied. Although available, CMR  and RS
methods are rarely used for certain species. One such species are
ticks, which are the most important vectors of human and animal
diseases after mosquitoes (Parola and Raoult, 2001). The classi-
cal index of tick abundance used is estimated by the number of
tick nymphs by dragging a piece of cloth once over the vegeta-
tion of a delimited area, generally 10 m2 (Vassallo et al., 2000) in
a selection of sites. Host-seeking nymphs, i.e. those waiting for a
host on the top of the vegetation, are collected by the drag. The
numbers of nymphs collected on the different sites are then com-
pared. The drag method is distinguished from RS methods in that
the cloth is dragged only once over each site. To our knowledge,
the sampling rate of the drag sampling method has been studied
little. Only one study (Talleklint-Eisen and Lane, 2000) has used
a RS design to estimate the abundance and the sampling rate of
the drag method. In this study, 17 successive samplings were con-
ducted over 23 days. This protocol could not guarantee that the
population remained closed over the sampling period. The authors
estimated the sampling rate to be 5.9% using the Hayne method
(Hayne, 1949).

To estimate parameters, the Hayne method makes a linear
regression of the number of successive captures on the cumula-
tive number of captures. The sampling rate and the population size
are estimated respectively as the slope of the regression line and
as the intersection point between the horizontal axis and regres-
sion line. However, the Hayne method is known to produce poor
estimations of population size (White et al., 1982), especially when
the sampling rate is potentially low (less than 10%) and variable.
Moreover, this method does not allow covariate effects to be taken
into account, nor does it provide confidence intervals for esti-
mates.

In this paper, a hierarchical Bayesian approach was used to esti-
mate both the sampling rate and the population size. This approach
allows the inclusion of prior knowledge and provides posterior
distributions of parameter estimates. Moreover, because it is hier-
archical, one can take into account parameters which are either
observable or not observable, and which are located at different
scales such as the area sampled and the site of sampling (Gelman
and Hill, 2006; Cressie et al., 2009). First, we studied the per-
formance of a Bayesian approach using simulations to determine
the minimum number of successive samplings needed to achieve
sufficient statistical accuracy for estimates while respecting an
underlying model assumption of a closed population. We  then
compared the performance of the Bayesian approach to the Hayne
method. Finally, our Bayesian approach was applied to RS tick data
collected using the drag method on several sites in September 2011.
In a first hierarchical Bayesian model (HBM), the sampling rate was
assumed to be specific to each site. In a second HBM, the sampling
rate was assumed to be the same for similar conditions with small
uncontrolled spatial variations due to the characteristics of the site
observed.

2. Materials and methods

2.1. Removal sampling data structure

The statistical unit considered in this study was the sampling
site. A sampling site was defined as a delimited area on which suc-
cessive samplings were performed. For a given sampling site, we
considered a closed population of an unknown size N0, i.e. with
no immigration, emigration, birth or death during the successive
samplings. We denoted by X = (X1, . . .,  XK) the sequence of captures
observed on a given site where K was the total number of successive
samplings carried out. Let Xk be the number of captures at the kth
sampling and Nk the remaining population after the kth sampling
where Nk = Nk−1 − Xk for k ∈ 1, . . .,  K. Furthermore, each individual of
the closed population was  assumed to be captured independently
with the same probability of capture � (Moran, 1951; Zippin, 1956).
Hence, we assumed that Xk followed a binomial distribution with
population size Nk−1 and probability of capture � (Eq. (1)):

(Xk|Nk−1, �)∼B(Nk−1, �), where Nk = Nk−1 − Xk. (1)

The capture probability was  considered as independent and the
same for all individuals, so we considered that it was equal to the
sampling rate, i.e. the percent of captured individuals in the popu-
lation.

2.2. Hierarchical Bayesian models

A first HBM (HBM1) assumed that the population size N0s and
the sampling rate �s was  specific to each site s. A second HBM
(HBM2) assumed that the sampling rate of a given site �s was asso-
ciated to both the effect of sampling conditions c (considered to be
a fixed effect) and a small variation due to the site sampled (consid-
ered to be a random effect). The logit transformation of sampling
rate �s denoted logit(�s) was  used. The logit(�s) was  decomposed
as the sum of the logit transformation of the sampling rate �c under
the sampling conditions c and a random effect �s (Eq. (2)):

logit(�s) = logit(�c) + �s. (2)

The random effect �s was  introduced to add a fluctuation of the
sampling rate �s due to the observed site s. The range of varia-
tion of the random effect �s, denoted by �2

c , was considered to
be specific to each sampling condition c where �s was assumed to
follow a normal distribution with zero-mean and variance �2

c which
depended on the sampling conditions c. The HBM1 and HBM2 mod-
els described above are summarised in Figs. 1 and 2 by Directed
Acyclic Graphs (DAGs) (Thulasiraman and Swamy, 1992; Clark and
Gelfand, 2006). These DAGs represent relationships (lines) between
the observed data and the unknown parameters or hypotheses of
the model (nodes). The lines represent the relations and the hier-
archy between nodes. The nodes symbolise the data observed Xk,
parameters to estimate N0s, �s, �c, prior distribution of parameters
to estimate for N0s, �s, �c and �s and the distribution of hyper-
parameter �2

c . If �s = 0 and �c was  specific to each site s, then the DAG
corresponded to the HBM1 model. HBM1 and HBM2 were imple-
mented in OpenBUGS (version 3.2.1.). Source codes are available in
the supplementary material.

The prior distribution is a key part of Bayesian inference and rep-
resents information about an uncertain parameter. In the absence
of accurate information, a uniform prior distribution over the inter-
val [0 ; 1000] was assigned to N0s. For HBM1, a uniform prior
distribution over the interval [0 ; 1] was  assigned to �s. For HBM2,
a uniform prior distribution over the interval [0 ; 1] was  assigned
to �c and a uniform prior distribution over the interval [0 ; 3] was
assigned to �2

c . The prior distribution was then combined with the
probability distribution of data to obtain the posterior distribu-
tion of parameters. Parameters were estimated by the mean and
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