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Article history: Biomass samples from marine scientific surveys are commonly used to investigate spatial and temporal

Received 10 April 2013 variations in stock abundances. Biomass records are often characterized by a high proportion of zeros

Received in revised form 7 June 2013 on the one hand, and occasional large catches on the other. These features induce a modeling challenge

Accepted 8 June 2013 when trying to understand the state of populations and their ecological associations with one another and

s 1 with habitat. We develop a hierarchical Bayesian model to represent the spatial structure of biomass and
eyworas:

analyze the spatial distribution and habitat associations of three species of macro-invertebrates sampled
L - . in the southern Gulf of St. Lawrence (Canada). A zero-inflated distribution based on a compound Poisson
Bayesian hierarchical modeling . X 8 . . .
Habitat associations with Gamma marks is used for the observation layer, and a linear model with spatial correlated errors
Spatial dependencies accounts for the role of habitat variables (temperature, depth and sediment type) in the process layer.
Macro-invertebrates Maps of quantities of interest (e.g. probability of presence, quantity of biomass) are produced, taking into
account the uncertainty of the estimated parameters and observation errors. This hierarchical Bayesian
modeling approach provides a useful tool for spatial management of human activities that may affect
living resources that may affect living resources, such as marine protected areas.
Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Understanding species spatial distribution and habitat associ-
ations are key challenges when managing harvested, endangered
or invasive species (Welsh et al., 1996; Engler et al., 2004; Cook
et al,, 2007). Marine spatial management measures, in which the
spatial and temporal distribution of human activities is restricted
to achieve ecological, social and economic objectives (e.g., marine
protected areas), have been the focus of many studies in the recent
decades (Shea, 1998; Hilborn et al., 2004; Hobday and Hartmann,
2006; Hartog et al,, 2011). In many applications, these manage-
ment approaches require knowledge of habitat use by the targeted
species to be effective (Perry and Smith, 1994; Williams and Bax,
2001).

Linear or additive models are often developed to infer distri-
butions and habitat use and preferences using survey or other
ecological data (as reviewed by Guisan and Thuiller, 2005). Efficient
models must be able to address two common characteristics of eco-
logical data: observations can be dominated by a large number of
null values combined with skewed positive values, and abundance
can be strongly spatially correlated. Failure to address both of these
characteristics is well known to impact model parameter estimates
and their uncertainty, leading to incorrect statistical inference and
therefore, in turn, potentially inappropriate management actions
(Zuur et al., 2009; Sileshi et al., 2009). Ideally, the models should
also be able to address possible spatial misalignment between the
available data for abundances and for habitat characteristics.

High proportions of zeros in survey data stem from three general
causes. An observed zero value can be a true zero if the species is not
present in the studied area, while a false zero, also called pseudo-
absence, results from a low probability of detection even though the
species is present. A third class of zeros results from an observer
effect, whereby a species normally found in the study area is
frightened away by some inappropriate data collection procedure.
Numerous approaches exist for such zero-inflated data when deal-
ing with counts, as reviewed in Martin et al. (2005). The two main
approaches, Zero-inflated Poisson (ZIP) and Zero-inflated binomial
(ZIB), are mixture models and the presence-absence is modeled
separately from the number of counts (i.e. individuals). The devel-
opment of zero-inflated models for continuous abundance data (i.e.
densities or biomasses) has also received attention (Stefansson,
1996; Maunder and Punt, 2004; Fletcher et al., 2005; Shono, 2008;
Ancelet et al., 2010). The simplest approach consists in adding a
positive constant to all the observations, typically followed by a log-
arithmic transformation, as is often performed in generalized linear
modeling (GLM). This approach requires choosing an arbitrary con-
stant that could severely bias model estimates (Maunder and Punt,
2004; Shono, 2008). An alternative is to remove the zero catches
from data prior to the analysis. However removing zero values often
affects the results and can also bias the analysis (Martin et al., 2005),
though this is not necessarily the case (Maunder and Punt, 2004). A
common and slightly more complex approach for continuous data,
named the delta approach (Stefansson, 1996; Shono, 2008), mod-
els separately the presence-absence using a binomial distribution
and positive values using a standard probability distribution func-
tion such as the log-normal (leading to a delta-lognormal model)
or the gamma (delta-gamma). The approach reduces bias since
the expected biomass is the product of the probability of presence
and the average positive biomass. This family of models treats all
absences as true zeros. Furthermore, sampling effort, which can
vary between sites for a number of logistical and operational rea-
sons, is mostly addressed by a prior standardization of the data
(Stefansson, 1996). However, performing such a standardization
may obscure the relationship that exists between expected values
(for a given sampling effort) and their associated variance for count
probability density functions.

In this paper, we develop a hierarchical Bayesian spatial model
for biomass data that overcomes these shortcomings. We apply
this approach to describe the distribution and habitat associations
of epibenthic invertebrates in the southern Gulf of St. Lawrence
(sGSL), Canada. The biomass records come from an annual bot-
tom trawl survey in which invertebrates and fish are collected at
randomly chosen locations by sweeping the ocean floor over tar-
geted distances which can vary between sites. We use a model
based on two substructures that are linked probabilistically using a
hierarchical approach. The first substructure, the observation layer,
consists of a compound Poisson model with Gamma marks, which
heuristically models the process of observing a Poissonian number
of patches of a species, each containing a random biomass given by
the Gamma mark. This approach constitutes a generalization of the
one proposed by Bernier and Fandeux (1970) and applied in ecology
by Ancelet et al.(2010) which used exponential marks. It also allows
for explicit accounting for the duration or volume of sampling for
individual sampling events. The second model substructure explic-
itly models habitat associations using a linear model that accounts
for spatial autocorrelation using a geostatistical approach. Jointly,
these model substructures result in a modeling approach that is
very flexible, likely making it a useful tool for spatial analysis and
planning.

2. Methods

2.1. Data description

Fisheries and Oceans Canada has conducted an annual bottom-
trawl survey in the sGSL each September since 1971 (Chadwick
et al., 2007; Benoit et al., 2009). Since its inception, the main objec-
tive of this survey has been to quantify the abundance and the
distribution of marine fishes and certain commercially important
invertebrates. Since 1988, data for epibenthic invertebrates such
as urchins, starfish, whelks and anemones have been collected.
The domain for the sGSL survey is split into 27 strata defined so
as to be homogeneous in terms of depth and geographic location.
Every year, since the mid 1980s, 140-200 sites have been chosen
according to a stratified random design. The number of sites per
stratum is generally proportional to stratum size, making the selec-
tion of sites at the survey level approximately randomly balanced.
Sites are sampled using a straight-line tow for a target duration
of 30 min. at 3.5 knots. All captured organisms are identified to
the lowest taxonomic level possible and weighed in kilograms per
tow. Habitat information, such as bottom temperature (°C) and
depth (m), is also collected at each bottom-trawl site. Moreover
the type of sediments is interpolated at each sampling site from
an existing map of surficial geology for the Gulf of St. Lawrence
(Loring and Nota, 1973). This study focuses on three epibenthic
macroinvertebrates sampled during the 1997 survey to illustrate
the modeling approach: green sea urchin (Strongylocentrotus droe-
bachiensis), starfish (Asterias sp), and sea cucumber (Cucumaria
frondosa). These three taxa were chosen for their differences in den-
sity distribution and habitat preferences so as to demonstrate the
model’s ability to confront different data situations (Figs. 1 and 2).
In fact, the majority of epibenthic macroinvertebrates in the sGSL
are distributed in patches of localized variable abundance, inter-
spersed by numerous and relatively large areas where the species is
absent. Consequently, the dataset contains a very large proportion
of sites where the species are not observed.

2.2. The statistical model for zero-inflated continuous positive
data

The model description is split into two parts, as is classically
done in hierarchical Bayesian modeling. The first section describes
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