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a  b  s  t  r  a  c  t

Some  important  diseases  are carried  by vectors  which  can  infect  susceptible  hosts  or  be  infected  by
infectious  hosts.  Growth  functions  may  be applied  to the vector  population.  Many  growth  functions  can
be  constructed  from  an  underlying  differential-equation  model  where  birth  and  mortality  processes  are
identified  explicitly.  However,  this  is  possible  in a variety  of  ways.  The  model  could  be applied  to (say)  a
midge  population  where  infection  by a  virus  is  possible  when  a  susceptible  midge bites  an  infectious  host,
giving  rise  to incubating  and  then  infectious  categories  of  midge.  An infectious  midge  can  then,  if  biting  an
uninfected  host,  infect  that host,  leading  to  pathogenic  consequences.  The  submodel  used  for  the  vector
population  partially  defines  overall  disease  dynamics,  which  not  only  depend  on  the  growth  function
chosen  but  also  on any  extra  assumptions  about  birth  and  mortality  processes  which  do  not  affect  the
growth  function  per  se.  The  logistic  equation  is  an  example  of  a sigmoidal  asymptotic  growth  function,
the  asymptote  being  attained  when  births  and  mortality  occur  at equal  rates.  Traditionally  in the  logistic,
the  interpretation  is  that  birth  rate  is  constant  and  mortality  rate  increases  as the  population  increases.  A
rate function,  constant  or  variable,  may  be  added  to both  birth  and  mortality  rates  without  changing  total
vector population  dynamics  from  the  logistic.  However,  the  dynamics  of  propagation  of  infection  can  be
substantially  different  with  different  assumptions  about  birth  and  mortality.  This  is highly  relevant  to
studies  of diseases  such  as  bluetongue  in ruminants  (involving  midges)  or  dengue  in  humans  (where
mosquitoes  are  involved).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Arboviral diseases, where the vector carrying the virus to an
uninfected host is an arthropod (“arbo” denotes “arthropod-borne),
can exhibit complex dynamics. For example, bluetongue (BT) is a
midge-transmitted viral disease of ruminants; the bluetongue virus
(BTV) is carried by various species of the biting midge, Culicoides.
Dengue is a mosquito-transmitted viral disease of humans; here
the virus is carried by Aedes mosquitoes. Two populations must
therefore be considered: hosts, H, and vectors, V, which together
determine the overall dynamics of the disease. We  have not been
able to find a BT modelling publication which makes it clear just
how the vector dynamics is treated (e.g. Turner et al., 2012; Sedda
et al., 2012). Favier et al. (2005), studying dengue, use modified
logistic equations for mosquito dynamics that simulate a logis-
tic; however, they do not discuss the reasons for their particular
choice of modification, and neither do they seem to be aware of the
other options which are available within the logistic assumption:
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these can give rise to quite different predictions of the dynamics
of infectivity. Similar options and treatments can be used with the
Gompertz growth function (in its autonomous time-independent
form: e.g. equation 5.29, p. 147, of Thornley and France, 2007) and
indeed with other growth functions where growth rate can be writ-
ten as a sum of positive and negative terms. The logistic function
is chosen here to discuss this problem because the logistic is sim-
ple and well-known, and continues to be of interest, applicability
and further mathematical development (e.g. Thornley and France,
2005; Thornley et al., 2007). In this paper, our objective is to use the
logistic formalism as an example of the importance of the underly-
ing assumptions concerning birth and mortality rates; it is shown
how the same overall logistic result can be obtained from differ-
ent assumptions, but that these can give a range of substantially
different infectivity dynamics.

2. Modelling

2.1. The basic logistic

The logistic growth equation for vector number, V, can be
written by defining the proportional growth rate of V, namely
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Fig. 1. Vector scheme. The three state variables are shown in the boxes. Rate
constants (d−1) are given next to the arrows which denote vector number flow rates
(number d−1). See Eqs. (7) for the state-variable differential equations and Table 1
for definitions of symbols, parameter values and units.

(1/V)dV/dt,  as (e.g. Thornley and France, 2007, pp. 143–145, equa-
tion 5.17)

1
V

dV

dt
= �0

(
1 − V

Vmax

)
,

V(t = 0 d) = V0 = 1 vectors,

�0 = 0.2 d−1, Vmax = 1000 vectors.

(1)

Here parameter �0 (d−1) is the proportional growth rate when
V → 0 and Vmax is the maximum value of V when (1/V)dV/dt  = 0. The
time variable is t (d). Integration of the differential equation leads
to

V = V0Vmax

V0 + (Vmax − V0) exp(−�0t)
. (2)

This is the familiar logistic growth function, asymptote
Vmax, sigmoidal with an inflexion at V = Vinf = Vmax/2 and
t = tinf = {loge[(Vmax/V0) − 1]}/�0.

Write the first of Eqs. (1) as

1
V

dV

dt
= b − m.

b = �0, m = �0
V

Vmax
.

(3)

b and m (d−1) can be interpreted as birth and mortality (death)
rates. However, it is clear that the birth and mortality rates, b and
m,  can be supplemented with an arbitrary quantity, � (d−1):

b = �0 + �, m = �0
V

Vmax
+ �.

1
V

dV

dt
= b − m = �0

(
1 − V

Vmax

)
.

(4)

The rate variable, �, may  be constant or variable. The logistic
equation for V is unchanged although its interpretation may  be
quite different. Rate variable, �, could be a function of V, or of the
state variables in Fig. 1 below, or, for a non-autonomous system, of
time variable t, possibly denoting an environmental dependence.
This can lead to different consequences if the logistic is used for
disease vector dynamics.

2.2. Disease vector scheme

Next, the scheme in Fig. 1 is applied to a disease vector whose
total population V grows according to a logistic. Total popula-
tion, V, is divided into three classes: susceptible (su), incubating
(ic) (infected but not yet infectious) and infectious (if). Note that,
although appropriate to this problem, our scheme does not fit
exactly into either of the traditional SIR or SEIR epidemiology

modelling frameworks (S = susceptible; I = infected and infectious;
R = resistant; E = “exposed” = infected but not infectious, i.e. incu-
bating) (e.g. Diekmann and Heesterbeek, 2000, p. 15; Nelson and
Masters Williams, 2007, chapter 6). Fig. 1 could be described as an
SEI model and lacks a recovered or resistant class, as is considered
to be realistic for the vectors (e.g. Lord et al., 1996). Thus (Fig. 1)
total population, V, is given by

V = Vsu + Vic + Vif. (5)

It is also useful to calculate the fractions of V which are suscep-
tible, incubating and infectious:

fsu = Vsu

V
, fic = Vic

V
, fif = Vif

V
. (6)

With birth rate b (d−1) and mortality rate m (d−1) (Fig. 1), tran-
sitions between the susceptible (su), incubating (ic) and infectious
(if) classes (Fig. 1) are defined by three differential equations:

dVsu

dt
= b(Vsu + Vic + Vif) − mVsu − kV H

Hif

H
Vsu,

dVic

dt
= −mVic + kV H

Hif

H
Vsu − kV,ic ifVic,

dVif

dt
= −mVif + kV,ic ifVic,

Adding these and with Eqs. (3), (5) :
dV

dt
= V(b − m)  = �0V

(
1 − V

Vmax

)
.

t = 0 d : V = Vsu = 1, Vic = Vif = 0 vectors;

Hif(= 10 say) and H(= 100 say) hosts.

kV H = 1 d−1, kV,ic if = 0.1666∗ d−1,

cVmax,H = 10 vectors per host.

Vmax = cVmax,HH = 1000 vectors.

(7)

The initial values are for a single vector which is susceptible.
All births are susceptible. All classes suffer mortality at the same
rate, m. Host numbers are assumed constant, with 10% of total host
number H being infectious (Hif), although in a larger model these
would be variables supplied by interacting vector and host sub-
models. The biting rate of vectors on hosts, kV H, is assumed to be
the same for all classes of vectors, Fig. 1, and without discrimination
between host classes; this term gives the rate at which susceptibles
(Vsu) become infected – fraction Hif/H of the hosts are infectious
to the feeding vectors, and also the rate at which susceptible hosts
become infected (Eq. (8)). The proportional rate at which incubating
vectors (Vic) become infectious vectors (Vif) is kV,ic if, giving a mean
incubation time of 1/kV,ic if = 6 d. The maximum number of vectors
that a host can support is cVmax,H, and hence, with 100 hosts, the
asymptote of the logistic, Vmax, is 1000. It is assumed that infectious
vectors, Vif, can only die, but cannot otherwise lose their infectivity.

Denote the (input) rate at which susceptible hosts, Hsu, enter
the incubating host class, Hic, IHic, by

IHic = kV HVif
Hsu

H
. (8)

Here H is the total number of hosts. For constant host num-
bers, the host infection rate is proportional to Vif. It will be seen
that the assumptions made concerning birth rate and mortality,
with an unchanged logistic for total vector numbers V, can have a
substantial impact on the dynamics of host infection.
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