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a  b  s  t  r  a  c  t

The  procedure  proposed  by Sakanoue  [Sakanoue,  S.,  2007.  Extended  logistic  model  for  growth  of  single-
species  populations.  Ecological  Modelling  205,  159–168]  is used  to  derive  the  kinetics  equations  of
population  growth.  It is based  on  three  assumptions:  resource  availability  changes  with  population  size;
resource  supply  to population  and  population  demand  for  resources  are  defined  as  functions  of  resource
availability  and  population  size;  and  resource  availability  and  population  size  shift  in  the  supply  function
attracted  to  the  demand  function.  These  assumptions  are  organized  into  an  abstract  equation,  which  can
be transformed  into  the  Verhulst  logistic  equation  under  certain  supply  and  demand  functions.  On  the
other  hand,  by  setting  “per  capita  resource  availability”  as  an independent  variable,  the abstract  equation
can  also  be  transformed  into  some  existing  kinetics  equations  and  new  kinetics  ones  involving  intraspe-
cific  interactions  such as  facilitation  and interference.  The  procedure  provides  a unified  means  of  deriving
and  relating  the  two  types  of  population  growth  equation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the maxim of Occam’s razor, we should choose the simplest
model that describes the observed data well. Furthermore, it is
ideal that different and related types of observations are depicted
by a model composed of a small number of equations. Some-
times, one fundamental phenomenon is expressed by different
types of mathematical model. As a well-known example in the field
of physics, quantum motion was modelled in the form of either
matrix mechanics or wave mechanics in the beginning. Shortly
thereafter, it became clear that the two mechanics are essen-
tially equivalent. The numerical correspondence of phenomena
to models is preferred to be many-to-one, and should be at least
one-to-one.

In the field of ecology, there are two classical and influential
equations for describing and analysing the growth of biological
populations: the Verhulst logistic equation (Verhulst, 1838; Pearl
and Reed, 1920) and the Monod kinetics equation (Monod, 1949,
1950). The former equation can trace the sigmoid curve that is a
well-known characteristic of population growth with time. The lat-
ter equation is known as a hyperbola with an upper asymptote,
which denotes the maximum specific growth rate. Although the
dependent variables of both equations are the same, i.e., the growth
rate of a population, the independent variable of the logistic equa-
tion is only population size, whereas those of the kinetics equation
are population size and resource availability. Nevertheless, the two
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equations have common mathematical characteristics. The intrin-
sic rate of natural increase in the logistic equation is probably the
same as the maximum specific growth rate in the kinetics equation.
Furthermore, the two equations are composed of simple quadratic
forms that indicate that a negative feedback control is included in
the growth system. These characteristics suggest that the adoption
of adequate variables and some ingenuity may  integrate the two
equations.

The ratio-dependence approach becomes widespread in under-
standing the interactions between consumer species (predator
species) and their resources (prey species) (Arditi and Ginzburg,
2012). For the growth of single-species populations, Contois (1959)
firstly examined and proposed a ratio-dependent kinetics model
in the experiment on bacterial growth, although he was  inter-
ested in the constant rather than the variable of his equation.
Droop (1968) and Getz (1984) formulated another type of ratio-
dependent kinetics model. The procedure proposed by Sakanoue
(2007) from which some logistic equations are derived is a kind of
ratio-dependence approach in the sense that the ratio of popula-
tion size to population demand for resources is treated as a variable.
Because the procedure was  oriented towards the generation and
expansion of the Verhulst logistic equation, it was  necessary to
substitute an independent variable for only population size in the
resultant equations. However, note that resource availability was
also included and treated as a variable in the execution of the pro-
cedure. This means that the procedure is a mechanistic approach
(refer to Schoener, 1986), which has often been addressed in the
construction of kinetics models, to modelling population growth.
There is room for ingenuity in the integration of logistic and kinetics
equations.
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The purpose of the present study is to show that the pro-
cedure can generate not only the logistic equation but also the
kinetics equation of population growth. First, the procedure is out-
lined and organized into an abstract equation. Second, the Verhulst
logistic equation is derived from the abstract one under certain
assumptions on the population demand for resources. Third, some
kinetics equations, one of which indicates Contois kinetics rather
than Monod kinetics, are also derived from the abstract one under
the same assumptions. Fourth, new kinetics equations involving
intraspecific interactions are developed from the abstract one. It is
wise and important to introduce the ratio of resource availability
to population size as an independent variable in the derivation of
the kinetics equations.

2. Outline of the procedure

Let the variable x and the constant xm be the resource availabil-
ity and its maximum, respectively. Similarly, let the variable y and
the constant ym be the population size and its maximum, respec-
tively. Assuming that the quantity of a limiting resource is finite, a
high resource availability is supplied to a small population and a low
resource availability is supplied to a large population. This relation-
ship is expressed as X + Y = 1, where x/xm and y/ym are substituted
for X and Y, respectively, to simplify the mathematical expressions
used. Studies of bacterial growth showed that this relationship is
valid under appropriate conditions with various limiting nutrients
serving as either carbon, nitrogen, phosphorus, or sulfur sources
(Contois, 1959). With the constant flow of resources such as in
streams (i.e., x = xm), the relationship becomes X = 1. Both functions
are simple mathematical expressions for mass conservation.

On the other hand, a large population requires a high resource
availability and a small population requires a low resource avail-
ability for increasing their size. This relationship can be expressed
as a function f(X, Y), provided that it is impossible for the population
to exist amidst the vacuity of resource availability (i.e., f(0, Y) = 0).
Studies of bacterial growth also suggested the existence of this rela-
tionship. For example, the relationship between the total growth of
bacteria (denoted by G) and the initial concentration of a limiting
nutrient (denoted by C) was shown to be linear and conformed to
the equation G = KC,  where K is a constant (Monod, 1949).

It is necessary to derive an equation for governing the dynam-
ics of resource availability and population size. Let the parameters
b and d, respectively, denote the per capita birth rate and per
capita death rate of a population. Assume that growth rate is pro-
portional to the ratio of population size to the function f(X, Y)
(i.e., rY/f(X, Y), where r ≡ b − d and denotes the intrinsic rate of
natural increase) and that death rate is proportional to popula-
tion size (i.e., dY).  Furthermore, assume that the dead and waste
products are immediately recycled as resources for the population.
Given these assumptions, Sakanoue (2007) achieved the abstract
equation

ẏ

y
= rf − dY

f + (fX − fY )Y
, (1)

where ẏ is the derivative of population size with respect to time,
fX is the partial derivative of f(X, Y) with respect to X, and fY is the
partial derivative of f(X, Y) with respect to Y. Eq. (1) is an integrated
model of population growth involving the relationships between
resource availability and population size. The effects of intraspecific
interaction such as facilitation and interference between individ-
uals of a population could be included in the function f(X, Y). Refer
to Appendix A of Sakanoue (2009) for the detailed derivation of Eq.
(1). In addition, the procedure described above could be extended
to modelling the dynamics of interacting populations (Sakanoue,
2009).

3. Derivation of logistic equation

The logistic equation proposed by Verhulst (1838) and Pearl and
Reed (1920) can be expressed as

ẏ

y
= r(ŷ − y)

ŷ
, (2)

where ŷ denotes the carrying capacity of the environment. It is sim-
ple to derive Eq. (2) from Eq. (1) and either expression of mass
conservation. First, a certain mathematical expression is set to the
function f(X, Y). Second, by using X + Y = 1 or X = 1, Eq. (1) is trans-
formed into the logistic equation.

Assume that f(X, Y) ≡ X. This means that the relationship
between the population’s demand and resource availability is
directly proportional. By using X + Y = 1 as the expression of mass
conservation, X can be substituted for 1 − Y. These treatments trans-
form Eq. (1) into Eq. (2), where ŷ  ≡ (r/b)ym. If all members in a
population are immortal (i.e., d = 0), Eq. (1) also becomes Eq. (2),
where the intrinsic rate of natural increase is equivalent to the per
capita birth rate (i.e., r ≡ b), and the carrying capacity is identical to
the maximum population size (i.e., ŷ ≡ ym).

On the other hand, using X = 1 as the expression of mass conser-
vation, Eq. (1) is also transformed into Eq. (2), where ŷ ≡ (r/b)ym.
If all members in a population are immortal (i.e., d = 0), Eq. (1) par-
ticularly becomes the exponential growth equation ẏ/y = b, where
ŷ ≡ ∞.  Although there is a variation in carrying capacity depending
on the type of mass conservation and per capita death rate, Eq. (1)
results in the same form as the Verhulst logistic equation. Note that
intraspecific interactions are not included in the derivation of Eq.
(2).

4. Derivation of kinetics equations

It is not difficult to derive the kinetics equations of population
growth from Eq. (1) and either expression of mass conservation. In
common with the derivation of the logistic equation, assume that
f(X, Y) ≡ X. First, consider the case in which X + Y = 1 is adopted as
the expression of mass conservation. Differently from the deriva-
tion of the logistic equation, X should not be substituted for 1 − Y.
Furthermore, the ratio of resource availability to population size
is qualified as a variable. This variable can be termed “per capita
resource availability” like that of Getz (1984). As an actual example,
it may  correspond to “cell nutrient quota” or “cell quota”, defined as
the weight of internal nutrient per unit biomass in the field of phy-
cology (refer to Droop, 1968). Let s denote the per capita resource
availability (i.e., s ≡ x/y). The treatments described above transform
Eq. (1) into the kinetics equation

ẏ

y
= −r(ŝ − s)

sm + s
, (3)

where sm ≡ xm/ym and ŝ ≡ (d/r)sm. Note that sm denotes the equiv-
alent coefficient of consumers to resources. Eq. (3) is of the same
form as the models proposed by Schoener (1978) in his theoreti-
cal study, Tilman et al. (1981) for the growth rate of two  species
of freshwater diatoms, and Houtsma et al. (1994) for the growth
rate of Listeria innocua, and identical to the model of Getz (1984) in
his theoretical study. One difference of Eq. (3) and the Getz model
from other existing models is in the variable. In Eq. (3), the vari-
able is the per capita resource availability. On the other hand, in
the existing models, the variable is the resource availability or con-
centration. If all members in a population are immortal (i.e., d = 0),
Eq. (3) becomes

ẏ

y
= bs

sm + s
. (4)
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