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a  b  s  t  r  a  c  t

Concern  about  catastrophic  tipping  points  has  motivated  inquiry  to better  understand  ecosystem  dynam-
ics  in the  presence  of human  action.  This requires  that  we confront  multiple  challenges  in  the  evaluation
of  complex  systems.  One  challenge  is  that  resilience  has  proven  difficult  to  quantify;  another  issue  is
that the  value  of  model  complexity  relative  to system  complexity  is disputed;  and  finally,  local  methods
for  assessing  uncertainty  are  inadequate  for more  complex  models.  We  address  these three  challenges
simultaneously  by  proposing  a means  of evaluating  ecological  resilience  via  employment  of  global  sensi-
tivity  and uncertainty  analysis  and  comparing  models  of varying  complexity.  We  suggest  that  probability
distribution  functions  in  output  from  global  sensitivity  and  uncertainty  analysis  can  be  interpreted  in
terms  of ball-and-cup  diagrams  used  in  systems  theory  to visualize  ecological  resilience.  This permits
quantification  of ecological  resilience  in  terms  of  the  probability  of whether  a system  will remain  in a
pre-existing  state  or shift  to a different  state.  We  outline  the  methods  for using  global  sensitivity  and
uncertainty  analysis  to evaluate  ecological  resilience  and  provide  examples  from  recent  research.  We
highlight  applications  of  these  methods  to  assessment  of  ecosystem  management  options  in terms  of
their  ramifications  for ecological  resilience.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Human action increasingly affects global ecosystems
(Millennium Ecosystem Assessment, 2005; Intergovernmental
Panel on Climate Change, 2007), pushing them toward potentially
catastrophic “tipping points” (Scheffer, 2009; Scheffer et al., 2009),
beyond which systems are unable to return to their initial states.
This concern has prompted calls for greater attention to research
and education concerning tipping points and broader issues of
resilience in complex dynamic systems (AC-ERE, 2009; Stafford
et al., 2010). Key to such efforts is the analysis of social–ecological
interactions (Pickett et al., 2005), particularly through applications
of dynamic simulation models (Liu et al., 2007) which capture key
processes that can shift social–ecological systems from one state
to another.

Three lines of inquiry have sought to understand complex sys-
tems for the sake of anticipating and avoiding radical changes in
socio-ecological systems. First, there is a growing literature on
the measurement and evaluation of resilience. A priority in the
resilience literature has been to develop methods to identify the
conditions under which complex systems remain in a pre-existing
state or surpass a tipping point and thereby shift to a different
state, as opposed to exhibiting non-catastrophic dynamics (e.g.,
Holling, 1996; Gunderson and Pritchard, 2002; Cumming et al.,
2005; Scheffer, 2009). Second, increasing computing power has
stimulated interest in the relationship between model complex-
ity and system behavior (e.g., Nihoul, 1994; Snowling and Kramer,
2001; Ascough et al., 2008). There, inquiry has focused on the sig-
nificance of model complexity for model output, due to debate over
the question of whether more complex models are more likely to
reveal the potential for transitions among multiple system states
(e.g., Waldrop, 1992; Scheffer, 2009). And third, there is growing
concern among modelers about how best to evaluate the impli-
cations of interacting sources of uncertainty in models, a concern
that has prompted development of new methods to evaluate model
uncertainty for its effects on model output (Saltelli et al., 2000,
2004, 2008). Parallel to concerns among modelers are similar pre-
occupations among ecosystem managers who must make decisions
under conditions of uncertainty about system dynamics and tipping
points. These three areas of research are in fact interrelated, and
each highlights challenges to the assessment of complex systems
for ecosystem management.

Section 2 of this paper therefore reviews the literatures on these
lines of inquiry. In the process, we combine contributions from
engineering and ecology (Gattie et al., 2007; Schulze, 1996). From
engineering, we draw insights concerning complexity in model
design and the evaluation of uncertainty in model predictions;
and from ecology, we employ the concept of ecological resilience
applied to understanding complex dynamics in social–ecological
systems. We  begin by reviewing relevant literature on three top-
ics: (1) the evaluation of ecological resilience, (2) the relationship
of model and system complexity, and (3) the relationship of model
complexity and uncertainty. We  then propose a means of unifying
these literatures using global sensitivity and uncertainty analysis
(Saltelli et al., 2000, 2004) to evaluate ecological resilience. This
review motivates the first of our three main arguments: analysis
of model uncertainty permits assessment of ecological resilience,
including the identification of different system states. In particu-
lar, we suggest that changes in model inputs map  onto changes
in model outputs, which can be interpreted in light of ecological
resilience. This argument integrates work on resilience and uncer-
tainty; however, implementation requires a concrete methodology
to put this integration into practice.

Section 3 therefore outlines the methods of global sensitiv-
ity and uncertainty analysis (GSA/UA) as a means for evaluating
ecological resilience. Sensitivity and uncertainty analyses are

complementary and usefully implemented together, so we  refer to
their joint operation as GSA/UA. We  show how output from GSA/UA
for a given model indicates in probabilistic terms the range of possi-
ble values for an indicator of system states, which in turn provides
quantitative information about uncertainties in important simu-
lated system components as well as insights into the ecological
resilience of the system.

For “proof of concept,” Section 4 of the paper illustrates the
implementation of GSA/UA by reviewing three previously pub-
lished mechanistic dynamic models of ecosystems. To each, we
apply GSA/UA in order to highlight its utility for quantitatively
assessing model uncertainty and ecological resilience, and to show
its value in applied contexts such as ecosystem management. Our
first example models the effects of climate change and sea level
rise on coastal habitats for shorebird populations; in this example,
the application of GSA/UA reveals high probabilities of observing
multiple possible system states. Furthermore, as climate change
occurs, the relative probabilities associated with different system
states change over time, which suggests dynamic shifts in the
system and its ecological resilience. This substantiates our first
argument and permits conclusions about model uncertainty and
ecological resilience in terms of the probability of observing dif-
ferent system states. The second example focuses on phosphorus
concentrations and vegetation dominance in a wetland ecosys-
tem and compares models of varying complexity. This provides an
illustration of our second central argument: increasing model com-
plexity can raise the probability of observing multiple and quite
distinct system states. The third example takes up the question
of how GSA/UA of ecosystem models can be applied as a prac-
tical tool in ecosystem management for ecological resilience. We
present a population model for an endangered species and evalu-
ate management decisions using a Monte Carlo filtering procedure
in GSA/UA to reflect management strategies in order to see if the
resulting model output indicates reduced probabilities of observing
undesirable system states. This provides an illustration of our third
main argument, that GSA/UA has applications to ecosystem man-
agement for ecological resilience by permitting observation of the
probabilities of different system states under specific management
regimes defined by subsets of distributions in uncertain model
inputs.

Given this review of case studies of GSA/UA applied to ecosystem
models, we  conclude in Section 5 by suggesting that GSA/UA pro-
vides a basis for the quantitative evaluation of ecological resilience.
In particular, we  discuss the use of GSA/UA to support ecosystem
management, notably as a tool to respond to concerns about uncer-
tainty in adaptive management (Gregory et al., 2006).

2. Literature review: resilience, complexity and uncertainty

2.1. Resilience in social–ecological systems

In systems theory, resilience is typically depicted in terms
of “system states” subject to “disturbances” that can cause
shifts among states (Carpenter and Brock, 2004; Holling, 1996;
Gunderson and Pritchard, 2002; Ludwig et al., 1997; Scheffer,
2009). Complex systems are often characterized as having multi-
ple possible system states, and encompassing processes that push
the system toward one state or another, called “system attrac-
tors.” Resilience thought often invokes a “ball-and-cup” analogy
that allows visualization of the behavior of complex systems, where
system state (the position of the ball) is defined by the shape of a
“basin of attraction” (the cup) in which the system may  move. Fig. 1
(top panel) illustrates the ball-and-cup analogy. Basins of attraction
reflect the tendencies of system attractors and define the possible
states of a system.
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