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Estimating patterns of habitat use is challenging for marine avian species because seabirds tend to aggregate in
large groups and it can be difficult to locate both individuals and groups in vast marine environments.We devel-
oped an approach to estimate the statistical power of discrete survey events to identify species-specific hotspots
and coldspots of long-term seabird abundance inmarine environments.We illustrate our approach using histor-
ical seabird data from survey transects in the U.S. Atlantic Ocean Outer Continental Shelf (OCS), an area that has
been divided into “lease blocks” for proposed offshorewind energy development. For our power analysis, we ex-
aminedwhether discrete lease blockswithin the region could be defined as hotspots (3×mean abundance in the
OCS) or coldspots (1/3×) for individual species within a given season. For each of 74 species/season combina-
tions, we determined which of eight candidate statistical distributions (ranging in their degree of skewedness)
best fit the count data. We then used the selected distribution and estimates of regional prevalence to calculate
and map statistical power to detect hotspots and coldspots, and estimate the p-value from Monte Carlo signifi-
cance tests that specific lease blocks are in fact hotspots or coldspots relative to regional average abundance.
The power to detect species-specific hotspots was higher than that of coldspots for most species because
species-specific prevalence was relatively low (mean: 0.111; SD: 0.110). The number of surveys required for ad-
equate power (N0.6) was large for most species (tens to hundreds) using this hotspot definition. Regulators may
need to accept higher proportional effect sizes, combine species into groups, and/or broaden the spatial scale by
combining lease blocks in order to determine optimal placement of wind farms. Our power analysis approach
provides a general framework for both retrospective analyses and future avian survey design and is applicable
to a broad range of research and conservation problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the distribution and abundance patterns of marine
species is important not only to address fundamental ecological ques-
tions on species habitat use and movement but also to evaluate poten-
tial impacts of human activities, such as energy development, on
marine populations and communities (Louzao et al., 2006; Nur et al.,
2011). Offshore renewable energy development is increasingly com-
mon in both Europe and theUnited Stateswith potential long-term con-
sequences for marine species (Garthe and Hüppop, 2004). Wind farms
can cause declines in seabird populations through direct impacts from
collision (Hüppop et al., 2006) or indirect impacts such as displacement
due to disturbance and habitat loss or disruption of migratory pathways
(Drewitt and Langston, 2006). Evaluating the potential consequences of

alternative energy development necessitates a clear understanding of
species spatial distributions, abundances, and habitat use to identify
sensitive areas in need of protection (Huettman and Diamond, 2001;
Ford et al., 2004). One important way to reduce risks associated with
offshore energy facilities is through scientifically informed marine spa-
tial planning processes that identify and avoid areas that are seabird
“hotspots” (high use areas). It is equally useful to determine “coldspot”
locations (areas of lowuse)wherewind farms can be safely implement-
ed with minimal risks to seabirds.

There are several difficulties in identifying species hotspots and
coldspots in marine environments. The first is that sampling in the
ocean, particularly in offshore areas, is expensive and logistically diffi-
cult due to remote survey locations and variable climatic conditions. Al-
though seabird sampling methodology is relatively standardized, data
can be collected using either aircraft or ships and continuous or discrete
transects (Tasker et al., 1984). Additionally, the number and duration of
studies is much smaller as compared to terrestrial locations, such that it
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is difficult to use any one survey effort to determine hotspot/coldspot
locations and combining data requires standardizing across sampling
discrepancies (Smith et al., 2014). The second issue is that seabird pop-
ulations tend to have patchy aggregations with extremely skewed dis-
tributions (Beauchamp, 2011). Thus, typical statistical distributions
that are used to model counts (e.g., Poisson, negative binomial) may
not be appropriate for seabird data (Zipkin et al., 2014). The disparate
data on seabirds and the uncertainty on how to model available data
creates a challenge for identification of consistent long-term patterns
in occurrence and abundance of marine birds.

We present a framework for assessing species hotspots and
coldspots – including the necessary amount of data – which accounts
for the extreme skewedness observed in seabird count data. We apply
our approach to data from the Outer Continental Shelf (OCS) of the At-
lantic Ocean in the eastern United States, a proposed area for offshore
wind energy development (Bowes and Allegro, 2012). Ongoing re-
search efforts have focused on compiling all available seabird data in
the OCS into the Atlantic Seabird Compendium (O'Connell et al.,
2009), allowing an unprecedented opportunity to examine species'
uses of the marine environment. Detailed spatio-temporal models of
the occurrence and abundance of birds and other highly mobile species
in the offshoremarine environment are challenging (Smith et al., 2014).
Our purpose here is not to create such a complicatedmodel, but instead
to develop a general framework that can be applied with a minimum of
input data to provide a first-order estimate of retrospective and pro-
spective statistical power to guide interpretation of past data collection
efforts and planning of future surveys. Although we focus our approach
on seabirds in the Atlantic Ocean for the specific topic of wind energy
development, our framework should be useful in identifying hotspots/
coldspots for other animal species that aggregate (e.g., insects, fish).

2. Material and methods

Our objective is to determine thenumber of surveys required for suf-
ficient statistical power to detect whether the long-termmean of a spe-
cies count of individuals (0,1,2,….,100,…) in standardized surveys at a
given location is larger (i.e., a hotspot) or smaller (i.e., a coldspot)
than some a priori reference mean by a meaningful amount. The
terms hotspot and coldspot have held a variety of interpretations in
the scientific community and popular literature. In this case, we define
a location as a species-specific hotspot if the mean count of individuals
(i.e., abundance) of that species, conditional on presence, is more than
three times the mean of the non-zero counts in some predefined refer-
ence region.We similarly define a species-specific coldspot as a location
where the mean count of individuals of that species, conditional on
presence, is less than one-third the mean of the non-zero counts in
some predefined reference region. Other proportional effect sizes
could easily be substituted, as appropriate. Our analyses are focused
on defining hotspots and coldspots for individual species based on
their prevalence in a region and their abundance at specific locations
within seasons. Other metrics, such as species richness or community
composition, could be used for defining hotspots/coldspots but are not
considered here.

We assume that the abundance of a given species at a particular lo-
cation in time is the outcome of a two-component random process
known as a hurdle model (Mullahy, 1986). In a hurdle model, abun-
dance is 0 with probability 1-∅, and non-zero with probability∅ (also
referred to as the occurrence probability) according to a Bernoulli distri-
bution. If abundance is non-zero, then the count of individuals (i.e., the
group sizes 1,2,3,…) is distributed according to a discrete probability
mass function with positive integer support.

Using this modeling framework, we can calculate the probability of
detecting a hotspot/coldspot given that a location is a hotspot/coldspot
for a specific number of sampling events. Conversely, we can determine
the number of sampling events that are necessary to detect a hotspot/
coldspot with a certain level of power. With spatially referenced count

data, we can also use the mean of a location's counts and the number
of surveys that have been conducted to calculate a p-value for evalua-
tion of the null hypothesis that the location is not a hotspot/coldspot.
To do this, we must determine for each species: 1) its prevalence
(occurrence probability) in the reference region (for the Bernoulli por-
tion of the hurdle model) and 2) the discrete probability distribution
that best describes the distribution of non-zero counts (i.e., the species'
group sizes) within the reference region (for the abundance component
of the hurdle model). We then implement a one-sample Monte Carlo
significance test (Hope, 1968; Section 2.3) to test for either hotspots/
coldspots at given sampling locations using the estimate of prevalence
(as a surrogate for the∅ parameter), the mean of the fitted distribution
(as a surrogate of themean for the reference region), and the parameter
estimates from the fitted discrete statistical distribution that describes
the non-zero counts.

2.1. Atlantic Seabird Compendium

The data for each seabird species come from the Atlantic Seabird
Compendium, which contains the largest collection of scientific seabird
surveys conducted within the Atlantic Ocean (O'Connell et al., 2009).
We defined our reference region as the Outer Continental Shelf (OCS),
the area currently being considered for renewable energy leasing by
the Bureau of Ocean Energy Management (BOEM). This area has been
divided into 48,446 lease blocks that are roughly 4.8 km × 4.8 km in
area (Appendix A, Figure A1).

The raw data consist of ship-based and aerial visual observations
along fixed-width survey-transects recording the species and number
of birds seen in each discrete time strip, or at each location along contin-
uous time strips. Observers were generally trained to avoid double
counting individuals but survey-specific observation errors are un-
known. We used a total of 32 datasets that were collected between
1978 and 2010, 28 of which were ship-based while the remaining 4
were conducted from fixed-wing aircraft (Appendix A, Table A1,
Figures A2–A6). Most of the surveys (28 total; 24 ship-based and 4
aerial) were conducted using the continuous time strip method. The
four discrete time strip surveys were all ship-based and generally con-
ducted for fixed 15-minute intervals on ships traveling at approximate-
ly 10 knots. We segmented all continuous time strip survey data (both
ship-based and aerial) into transects of 4.63 km, equivalent to the dis-
tance covered by a ship moving at 10 knots for 15 min, to standardize
the data across the two survey platforms and to match the discrete
time surveys. We eliminated all transect segments shorter than 60%
(2.78 km) of this distance, and any discrete time strip surveys shorter
than 10 min (n = 209 removed transects). This allowed the remaining
discrete and continuous time strip transect segments to be compared on
an approximately common basis, “15-minute-ship-survey-equiva-
lents.” The resulting data consisted of 44,176 transects that covered
our reference region (the OCS) with approximately 84% having lengths
of 4.63 km (and the remainder having lengths no less than 2.78 km).
Each standardized transect segment was then assigned to a BOEM
lease block based on its centroid, such that all count data from a specific
transectwas assumed to have been observed in the corresponding lease
block. All count data for a single species were then summed for each
transect, date, dataset combination. We tabulated the number of sam-
ples for each lease block within each season and assumed that if a tran-
sectwas flown/cruised and a given specieswas not recorded then it was
not present (because none of the surveys recorded species absences).
Although it is likely that this standardization did not fully resolve all
differences among survey platforms and protocols, we believe that it
accounted for the major differences among surveys.

Because species habitat uses and aggregations can vary throughout
the year, we analyzed the count data for each species separately by
season (spring = March 1 to May 31; summer = June 1 to August 31;
fall = September 1 to November 30; winter = December 1 to February
28/29) and only considered counts where individuals were identified to
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