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a b s t r a c t

Habitat assessments for biodiversity conservation are often complicated by the lack of detailed knowl-
edge of a study species’ distribution. As an alternative to resource-intensive field-based methods to
obtain such information, remotely sensed products can be utilized in species distribution models to infer
a species’ distribution and ecological needs. Here we demonstrate how to arbitrate among a variety of
remotely sensed predictor variables to estimate the distribution and ecological needs of an endangered
butterfly species occurring mainly in inaccessible areas. We classified 19 continuous environmental pre-
dictor variables into three conceptually independent predictor classes, terrain, land cover, and vertical
vegetation structure, and compared the accuracy of competing Maxent habitat models consisting of dif-
ferent combinations of each class. Each class contributed, though disproportionately, to our most reliable
model that considered all 19 variables. We confirm that variables obtained from remote sensors can
effectively estimate the distribution and ecological needs of a relatively unknown imperiled species
occurring in inaccessible locations. Importantly, increasing the variety of predictor classes through
multi-sensor fusion resulted in greater model accuracy than increasing the absolute number of predictor
variables.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Considering that habitat loss is a primary driver of species
extinctions, detailed habitat assessments are among the most
important first steps guiding conservation efforts for imperiled
species (Mace and Lande, 1991). Thorough habitat assessments
are, however, often complicated by the lack of detailed knowledge
of a threatened species’ distribution, habitat status, and ecological
needs (Anderson and Martinez-Meyer, 2004). Obtaining such infor-
mation is not trivial. Threatened species are often sparsely distrib-
uted, hard to detect, and – due to biotic interactions, historical
legacies, and dispersal barriers – not found in all suitable habitat
patches (Pulliam, 2000). These qualities make it hard to separate
unsuitable habitat from unoccupied suitable habitat (Gu and Swi-
hart, 2004). In addition, time and monetary constraints typically
prevent detailed bio-assessments that involve extensive surveys,
experiments, and long-term demographic studies. Here we esti-
mate the distribution and ecological needs of a relatively unknown
imperiled species occurring in inaccessible locations, and, in doing
so, develop methods to evaluate the contribution of a variety of

readily accessible, continuous remotely sensed predictor variables
that may be incorporated into species distribution models.

To overcome the challenges associated with imperiled species’
habitat assessments, ecologists employ species distribution models
(SDMs) to estimate imperiled species’ distributions (Elith and
Leathwick, 2009). Using spatial data describing distributions and
environmental characteristics, SDMs estimate the relationship
between the study species’ occurrences and the underlying envi-
ronment. These approximations of the target species’ environmen-
tal niche are then used to map suitable ecological conditions over
an entire study region (Elith and Leathwick, 2009). Because they
enable researchers to overcome the challenges associated with
resource-intensive bio-assessments, and because of improved
model reliability, SDMs have become increasingly popular among
ecologists and conservationists (Elith and Leathwick, 2009).

Progress in remote sensing technologies has strongly
complemented advances in SDMs. As an alternative to resource-
intensive field-based methods, air- and space-borne sensors enable
researchers to acquire reliable environmental data at scales rele-
vant to SDMs in a consistent and repeatable way (Gillespie et al.,
2008), even from poorly known and inaccessible areas (Raxworthy
et al., 2003). Despite their utility, remotely sensed predictor
variables remain underutilized in SDMs, possibly because the liter-
ature offers little guidance on appropriate datasets (Buermann
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et al., 2008) and interpretation of results obtained from remotely
sensed data (Turner et al., 2003). Since the scale at which organ-
isms perceive and interact with their environment is often much
smaller than the scale at which many remotely sensed variables
are obtained, concerns have also been raised as to whether remo-
tely sensed data can be used to detect environmental variation at
scales relevant to SDMs (Bistrat et al., 2011; Laurent et al., 2005).

The accelerating availability of diverse, remotely sensed prod-
ucts has generated questions about which and how many parame-
ters to incorporate into model building. These parameters can be
categorized into four conceptually independent remotely sensed
predictor classes – terrain, (horizontal) land cover, (vertical) vege-
tation structure, and climate. Building on a previous effort that
only considered land cover variables to track temporal habitat
changes (Bartel and Sexton, 2009), we develop SDMs using a range
of continuous remotely sensed predictor variables within three of
these four remotely sensed predictor classes for an endangered
butterfly, the St. Francis’ satyr Neonympha mitchellii francisci. From
these, we developed seven SDMs based on each predictor class
independently, and in combination with one another. Four of our
SDMs thereby utilized data from more than one sensor simulta-
neously, termed ‘‘multi-sensor fusion’’ (Hall and Llinas, 1997).
Using our SDM results, we compared the performance of each
SDM, blocked by data source, in predicting St. Francis’ satyr
presences. We also evaluated the relative contribution of each
predictor variable to St. Francis’ satyr distribution. In conducting
our investigation, we developed an approach that tests significance
of different classes of remotely sensed variables that should be
generally applicable to arbitrate among competing models that
could include various data inputs.

2. Material and methods

2.1. Study species

St Francis’ satyr, globally restricted to early-successional
wetlands situated on United States Department of Defense lands
at Ft. Bragg, NC (35�070S, 79�080W, 65,032 ha), is an ideal species
for a case study on SDMs utilizing remotely sensed data for a num-
ber of reasons. First, the species is listed as Endangered under the
United States’ Endangered Species Act because of its low popula-
tion size and limited geographical range. Second, some previously
healthy St. Francis’ satyr subpopulations are currently in decline as
once-suitable habitat transitions toward late-successional stages
(Kuefler et al., 2008; Bartel and Sexton, 2009), creating an urgent
need to assess the status of suitable habitat to determine the like-
lihood of population recovery. Third, our study area offers what we
believe to be several suitable early-successional wetlands that sup-
port St. Francis’ satyr’s one known host plant, Carex mitchelliana
sedges, which itself has very limited distributions. Yet, many of
these patches remain unoccupied, raising questions about whether
we can truly separate unsuitable from unoccupied suitable habitat.
Fourth, much of the distribution of St. Francis’ satyr falls within the
restricted artillery impact zones at Ft. Bragg, where very limited
and irregular access complicates efforts to confirm presences of
this cryptic species with a short flight period (Kuefler et al.,
2008). St. Francis’ satyr is thereby representative of many other
species whose life history is poorly described, and/or that live in
inaccessible areas.

2.2. St. Francis’ satyr occurrence

During 2008 we extensively (i.e. daily, during both month-long
flight periods, Kuefler et al., 2008) searched for St. Francis’ satyr
butterflies in all known and accessible colonies (n = 17). For each

butterfly observed, we obtained Universal Transverse Mercator
(UTM) coordinates using a WAAS-enabled Trimble Nomad 900GL
Global Positioning System (GPS) unit (1–3 m accuracy). In total,
138 GPS points were obtained, all within 3 m of butterfly observa-
tions to maximize locational accuracy (Graham et al., 2008). Be-
cause of the temporary, successional nature of St. Francis’ satyr
habitat, we based habitat suitability models on locations where
we saw St. Francis’ satyr during one focal year, 2008 (the year for
which we obtained Landsat data, see below).

2.3. Predictor variables

We tested the relative importance of three conceptually inde-
pendent predictor classes of remotely sensed predictor variables
– terrain, (horizontal) land cover, and (vertical) vegetation struc-
ture – in explaining St. Francis’ satyr distributions (Table 1). We
omitted a fourth class consisting of climate measures because such
data are usually coarsely scaled (Turner et al., 2003) and thus more
appropriate for regional or continental SDMs (Gillespie et al., 2008;
Elith and Leathwick, 2009). While some interpolated (e.g. Thornton
et al., 1997) and combined (e.g. Herman et al., 1997) climate mea-
sures exist, remotely sensed climatic predictor variables are rare,
especially for terrestrial surfaces.

Terrain variables, derived from Digital Elevation Models (DEMs)
(Li et al., 2005), play an important, though indirect, role in SDMs
through their influence on climate (Moore et al., 1990) and vegeta-
tion (Franklin, 1995). Five continuous terrain predictor variables
were used in this study, which included proxies for moisture (flow
accumulation and slope), solar radiation (aspect), and topography
(relative slope position and terrain shape, Moore et al., 1990). All
terrain variables in this study were derived from the USGS National
Elevation Dataset (Gesch et al., 2002), which we obtained at
1/3 arcsec resolution, resampled to 10 m resolution, and processed
using tools contained in the ArcGIS Spatial Analyst and TauDEM v.
4.0 (Tarboton, 2009) packages.

Land cover predictor variables, obtained through passive optical
multispectral sensors, are used to describe a study area’s physio-
graphic and physiognomic characteristics. Most often, land cover

Table 1
Estimates of variable importance of terrain, land cover and vegetation structure
variables used to predict St. Francis satyr presences using the Maxent software
package (Phillips and Dudík, 2008).

Remotely
sensed class

Variable Variable
importance
(%)

Permutation
importance
(%)

Terrain Slope 19.4 25.3
Relative Slope Position 6.3 10
Terrain Shape 0.5 0.6
Aspect 0.6 0.2
Flow Accumulation 0.5 0.2

Land cover Deciduousness 24.1 41.3
Summer brightness 9.3 2.3
Wetness seasonality 1.6 2.2
Brightness seasonality 1.3 1.2
Winter greenness 2.0 1.1
Summer wetness 5.4 0.6
Winter brightness 0.8 0.4
Winter wetness 0.9 0.4
Summer greenness 15.7 0.3

Vegetation structure Canopy density 2.0 8.5
Understory density 3.0 2
Shrub density 1.1 1.6
Subcanopy density 3.6 1.4
Midstory density 1.8 0.3

Variable importance is calculated heuristically and thus sensitive to collinearity and
the order of variable importance. Permutation importance provides an alternative
measure that is calculated from the AUC of the final model, and thus robust to the
path of input variables.
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