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a b s t r a c t

Hydrological models always suffer from different sources of uncertainties. As the distributed hydrological
models play a very important role in water resource management, reliable quantification of uncertainty
in hydrological modeling results is quite necessary. The purpose of this study is to apply three uncer-
tainty analysis methods to a distributed hydrological modeling system, quantify the impact of parameter
uncertainties, and examine their performance and capability. Due to the important location and typical
hilly features, the upper reaches of the Wenjing River watershed in Western China were selected as the
study area. The soil and water assessment tool (SWAT) model was applied to simulate the surface runoff
during 1998–2002 and validated by the observed data. After global sensitivity analysis and modeling cali-
bration, the Nash–Sutcliffe coefficient (NSE) and coefficient of determination (R2) values of surface runoff
for calibration are 0.75 and 0.80, and for verification periods were up to 0.74 and 0.87, respectively. Three
uncertainty analysis methods were further conducted and compared within the same modeling frame-
work: (1) the sequential uncertainty fitting algorithm (SUFI-2), (2) the generalized likelihood uncertainty
estimation (GLUE) method, and (3) the parameter solution (ParaSol) method. Through the comparison of
a set of proposed evaluation criteria for uncertainty analysis methods in this study, including R-factor,
P-factor, the ratio of P-factor and P-factor, computation efficiency, and performance of best estimates
(NSE and R2), the SUFI-2 method was able to provide more reasonable and balanced predictive results
than the other two methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hydrological models are simplified, conceptual, mathematical
representatives of hydrologic processes to simulate water balance
and cycle (Moradkhani and Sorooshian, 2009). A large number of
hydrological models have been developed and applied in variety of
areas such as flood control, water resources management, water
quality control, land planning, and climate change studies. The
hydrological models can be classified into lumped and distributed
models. Unlike the lumped models, which treat the study basin
as a single unit and only require a small number of parameters
and inputs, distributed models are able to account for the spa-
tial variability of the watershed (Refsgaard, 1997; Carpenter and
Georgakakos, 2006). The high demands of distributed variables and
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inputs make the applications of distributed models constrained
previously until accelerating development of computer technology
in recent years.

Due to the complexity of the hydrological system and the lack
of information, uncertainty inherently exists and challenges the
implementation of distributed hydrological models. The poten-
tial improvement in hydrological prediction for distributed models
requires a great number of high resolution inputs and parame-
ters, leading to more uncertainties involved in modeling processes.
Generally, uncertainties arise from measurement errors associated
with system input, from model structural problems due to assump-
tions and simplification, and from approximation in determining
parameters (Blasone et al., 2008; Yang et al., 2008). Among these
three sources, parameter uncertainty is inevitable but relatively
easy to control through an appropriate calibration especially for
some conceptual or empirical parameters. The direct measure-
ment of parameters is usually labor-intensive, time-consuming
and costly, leading to quantitative or qualitative limitations in
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observed data and introducing uncertainties into the modeling sys-
tem. In addition, some conceptual parameters usually estimated
by empirical equations and literature references also lead some
uncertainties to the system (Gong et al., 2011; Shen et al., 2012;
Xue et al., 2013). Furthermore, the interactions and correlations
between parameters can also cause uncertainties. For example, dif-
ferent parameter sets might result in similar prediction results. This
non-uniqueness (known as the phenomenon of equifinality) is an
inherent property of inverse modeling (Beven and Binley, 1992;
Abbaspour et al., 2007; Abbaspour, 2011). Any inappropriate mod-
ification or adjustment of key parameters may further increase the
level of uncertainty and cause unwanted consequences. In some
cases, underestimation of uncertainty may cause unexpected losses
and overestimation of uncertainty may lead to waste of resources
(Shen et al., 2012). Therefore, uncertainty analysis is necessary and
critical to ensure the success of hydrological modeling (Beven and
Binley, 1992; Vrugt et al., 2003; Yang et al., 2007a,b).

There are growing interests in investigating uncertainties asso-
ciated with hydrological studies and their effects on model
performance nowadays (Yang et al., 2007a; Shen et al., 2008; Yang
et al., 2008; Jin et al., 2010; Shen et al., 2010). A variety of meth-
ods have been developed to characterize, quantify and control
the parameter and modeling uncertainties, such as Bayesian tech-
niques (Kuczera and Parent, 1998; Thiemann et al., 2001; Vrugt
et al., 2003; Kavetski et al., 2003), sequential uncertainty fitting
(SUFI-2) (Abbaspour et al., 2007), generalized likelihood uncer-
tainty estimation (GLUE) (Freer et al., 1996), Markov chain Monte
Carlo (MCMC) (Vrugt et al., 2003; Marshall et al., 2004), automatic
calibration and response surfaces (Mugunthan and Shoemaker,
2006), and parameter solution (ParaSol) (van Griensven and
Meixner, 2004). Among these methods, SUFI-2, GLUE and ParaSol
are three widely used methods for parameter uncertainty analysis
in environmental modeling. The SUFI-2 method has been exten-
sively applied to analyze parameter sensitivity and identify critical
sources of uncertainty in modeling watersheds (Abbaspour et al.,
2007; Yang et al., 2008; Tang et al., 2012). The GLUE method has
been applied to assess uncertainty in various modeling endeav-
ors such as rainfall-runoff modeling (Beven and Binley, 1992),
soil erosion calculation (Brazier et al., 2001), groundwater sim-
ulation and well capture zone delineation (Feyen et al., 2001),
and flood inundation (Aronica et al., 2002). Particularly in hydro-
logical studies, the GLUE method has become one of the most
popular tools in the past two decades to analyze parameter uncer-
tainties (Freer et al., 1996; Shrestha et al., 2009). The ParaSol
method is used to perform optimization and uncertainty anal-
ysis for complex models based on a modified shuffled complex
evolution algorithm (SCE-UA) (Duan et al., 1992). Due to its high
efficiency in handling multi-objective problems, this method has
been demonstrated as a robust, flexible and suitable tool for model
calibration in complicated hydrological studies (Duan et al., 1994;
Duan, 2003; van Griensven and Meixner, 2004, 2007; Abbaspour,
2011).

However, limited studies have been reported on comparing the
capability of these three uncertainty analysis methods (i.e., SUFI-2,
GLUE and ParaSol) in capturing the impact of parameter uncer-
tainty within the same modeling framework (Vrugt et al., 2003;
Mantovan and Todini, 2006). In order to fill the knowledge gap, this
study is to apply these three methods to a distributed hydrological
modeling system, quantify the impact of parameter uncertainties,
and examine their performance and capability. A case study was
conducted in the Wenjing River watershed, China, by using the
solid and water assessment tool (SWAT). The results can provide
a scientific reference for understanding the strength and short-
comings of three uncertainty analysis methods. The uncertainty
analysis method with best performance can be selected to evaluate

the impacts of uncertainties and improve the prediction accuracy
of hydrological modeling for future studies.

2. Methodology

The general framework of three uncertainty analysis methods
(SUFI-2, GLUE and ParaSol) is shown in Fig. 1. The detailed introduc-
tion of three uncertainty analysis methods and the SWAT model is
provided in the following sections.

2.1. SUFI-2

Based on a Bayesian framework, the SUFI-2 method determines
uncertainties through the sequential and fitting process. In SUFI-
2, the several iterations for updating the estimates of unknown
parameters are required to achieve the final estimates. In this
method, parameter uncertainties account for different possible
sources, including model input, model structure, parameters, and
observed data for calibration and validation purposes. An objec-
tive function needs to be defined before uncertainty analysis and
assigned with a required stopping rule.

The degree to which all uncertainties considered is quantified by
a measure referred to the P-factor. The P-factor is the percentage of
observed data bracketed by the 95% prediction uncertainty (95PPU)
(which is calculated at the 2.5% and 97.5% levels of the cumulative
distribution of the output variables). Another measure quantifying
the strength of uncertainty analysis is called the R-factor, which is
equal to the average thickness of 95PPU band divided by the stan-
dard deviation of the observed data. A P-factor of 1 and R-factor of 0
is a simulation that exactly matches the observed data, which is the
ideal case of simulation and cannot be achieved for real cases due to
uncertainties from different sources and measurement errors. Cer-
tainly, a large P-factor can be achieved at the expense of a larger
R-factor. If the R-factor is large, the ranges of parameters are larger
than the optimal parameter ranges and more parameter uncer-
tainties will remain. Usually, a value of less than 1 is a desirable
result for the R-factor. Hence, a balance between these two fac-
tors has to be monitored while decreasing parameter uncertainty,
and the ratio of P-factor and R-factor can be used to evaluate the
strength and goodness of fit of uncertainty analysis. When accept-
able P-factor and R-factor are obtained, the reduced parameter
uncertainty ranges are the preferred ones (Abbaspour, 2011).

The SUFI-2 method assumes a large parameter uncertainty (or
physically meaningful range) to ensure the observed data fall into
the 95PPU for the first iteration, and decrease the uncertainty in
steps while monitoring the P-factor and R-factor for next several
iterations. The goal of the SUFI-2 method is to search for bracketing
most of the observed data with the smallest possible uncertainty
band, which means the good results should have a relatively large
P-factor with relatively small R-factor. These two measures can also
be used to evaluate the performance of other uncertainty analysis
methods. The initial parameter ranges are updated by calculating
the sensitivity matrix and equivalent of Hessian matrix, followed by
calculating the covariance matrix, 95% confidence intervals of the
parameters, and correlation matrix. Parameters are then updated
with new ranges which are always centered around the values of
the optimal parameter set that leads to the best simulation (using
Eqs. (4) and (5) shown below). The major procedures of SUFI-2
are shown as follows (Abbaspour et al., 2007; Yang et al., 2008;
Abbaspour, 2011; Xue et al., 2013):

Step 1. An objective function and reasonable parameter ranges
[bj,min, bj,max] are pre-defined. There are a number of ways to formu-
late an objective function, and the Nash–Sutcliffe coefficient (NSE)
and coefficient of determination (R2) are two of the most popular
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