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h i g h l i g h t s

� QSPR model predicts hydroxyl radical rate constants of micropollutants.
� Multiple linear regression with forward selection method was used.
� Model was externally validated and the applicability domain was defined.
� Model determines susceptibility of contaminants to AOPs without experimentation.
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a b s t r a c t

Quantitative structure–property relationship (QSPR) models which predict hydroxyl radical rate
constants (kOH) for a wide range of emerging micropollutants are a cost effective approach to assess
the susceptibility of these contaminants to advanced oxidation processes (AOPs). A QSPR model for the
prediction of kOH of emerging micropollutants from their physico-chemical properties was developed
with special attention to model validation, applicability domain and mechanistic interpretation. In this
study, 118 emerging micropollutants including those experimentally determined by the author and data
collected from the literature, were randomly divided into the training set (n = 89) and validation set
(n = 29). 951 DRAGON molecular descriptors were calculated for model development. The QSPR model
was calibrated by applying forward multiple linear regression to the training set. As a result, 7
DRAGON descriptors were found to be important in predicting the kOH values which related to the elec-
tronegativity, polarizability, and double bonds, etc. of the compounds. With outliers identified and
removed, the final model fits the training set very well and shows good robustness and internal predic-
tivity. The model was then externally validated with the validation set showing good predictive power.
The applicability domain of the model was also assessed using the Williams plot approach. Overall, the
developed QSPR model provides a valuable tool for an initial assessment of the susceptibility of microp-
ollutants to AOPs.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Micropollutants such as endocrine disrupting chemicals (EDCs)
and pharmaceuticals and personal care products (PPCPs) create
unique challenges to water treatment because of the number of
compounds detected and the diversity and complexity of their
physico-chemical properties. These compounds are present at

low ng L�1 levels in source water samples and only a small number
of them have been investigated to date (Padhye et al., 2012).
Recent studies have summarized the presence of many
trace-level EDCs and PPCPs in finished drinking water, distribution
systems and in tap water (Delgado et al., 2012; Fan et al., 2013).
Although their health effects are mostly unknown, the removal of
these micropollutants from drinking water has been of concern
to water utilities and environmental agencies due to the precau-
tionary principle. Advanced treatment technologies such as
advanced oxidation processes (AOPs), reverse osmosis, and
nanofiltration have demonstrated effectiveness in removing
micropollutants (Ivančev-Tumbas, 2014).
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AOPs such as O3/H2O2, UV/H2O2, and UV/TiO2 produce a highly
reactive oxidant, the hydroxyl radical, which reacts rapidly with
most organic micropollutants and leads to their degradation
(Huber et al., 2003). To investigate the removal efficiency of vari-
ous organic micropollutants during AOPs in natural waters, it is
necessary to obtain the reaction rate constants of these micropol-
lutants for their reaction with hydroxyl radicals (kOH). Rate con-
stants are needed when predicting the extent to which the
original contaminants are eliminated from water, and they are
therefore important for designing and optimizing treatment pro-
cesses. Although kinetic data are available for a large number of
chemicals for their reactions with hydroxyl radicals (Buxton
et al., 1988), there is still a data gap for emerging micropollutants
such as EDCs and PPCPs since it is time consuming and costly to
establish these values experimentally. Thus, it is highly desirable
and more cost-effective to develop a reliable model to predict
the rate constants of numerous micropollutants.

Quantitative structure–property relationships (QSPR) have been
widely used as a modeling tool to develop relationships between
the properties of chemicals and their structural characteristics
(Eriksson et al., 2003). The application of QSPR in water treatment
studies is relatively recent, and only a few QSPR models have been
proposed for ozonation, chlorination, AOPs, membrane filtration,
and activated carbon adsorption (Delgado et al., 2012). To date, a
small number of QSPR models have been published to predict
kOH values of organic compounds in the aqueous phase using sev-
eral different approaches. The fixed-descriptors approach, a
Hammett-type linear free energy relationship was employed for
kOH modeling (Peres et al., 2010; Zimbron and Reardon, 2005;
Lee and von Gunten, 2012), in which the substituent constant r
was used to model the effect of functional groups of substituted
aromatics. However, Hammett-type relationships are only applica-
ble to substituted aromatics with known substituent constants and
cannot be applied to other non-aromatic compounds. The
selected-descriptors approach is often used when significant
descriptors are unknown for developing empirical models, in
which significant descriptors are selected from a pool of candidate
descriptors using statistical methods (Kusić et al., 2009; Toropov
et al., 2012; Sudhakaran and Amy, 2013). However, advanced sta-
tistical skills are needed for the selection of descriptors (e.g.,
genetic algorithm, principal component analysis). In addition, the
final set of descriptors is selected based on the principal of
best-fit to the training set compounds, sometimes making the
model interpretation difficult. The group contribution approach
has also been used to predict kOH values for compounds with a
wide range of functional groups (Monod and Doussin, 2008;
Minakata et al., 2009). However, availability of data for all possible
functional groups and the assumption of additivity of rate con-
stants limit the use of the group contribution method (Minakata
et al., 2009). In addition, the models developed thus far are not nec-
essarily applicable to the emerging micropollutants with their
diverse structures since many of these existing models use only a
few if any emerging micropollutants such as PPCPs or EDCs in
model development.

With a special focus on the emerging micropollutants, the
objective of this study was therefore to develop a robust QSPR
model for predicting kOH values of a wide range of micropollutants.
A large number of micropollutants with diverse structures includ-
ing many EDCs and PPCPs were selected for model development
and their rate constants collected from the literature. This data
set was then split into a training set and a validation set. The train-
ing set was used to calibrate the model which was then externally
validated using the validation set. In addition, the applicability
domain of the model was defined by a leverage approach. Using
the applicability domain it can be determined whether the model
is applicable to a new, unknown compound. This overall approach

ensured that the developed models were applicable to micropollu-
tants with diverse structures and a wide range of kOH values. The
developed model gives an indication of the susceptibility of
micropollutants to react with hydroxyl radicals by providing their
kOH values. These rate constants are needed to predict removals in
natural waters and the developed model will therefore be helpful
in assessing the efficiency of AOP technologies with respect to
the degradation of micropollutants.

2. Materials and methods

2.1. Data set

A total of 118 emerging micropollutants were used for develop-
ing the QSPR models in this study, in which kOH values of 22
micropollutants were determined experimentally in a previous
study using competition kinetics (Jin et al., 2012), and the kOH val-
ues of the other 96 micropollutants were collected from the liter-
ature. Micropollutants included in this study were very
heterogeneous in structure and included a number of chemical
classes (e.g. phenols, polycyclic aromatic hydrocarbons, alkanes,
halogenated aromatic compounds, organophosphorus compounds,
etc.) thus covering a wide spectrum of physico-chemical proper-
ties. The micropollutants included in this study and their kOH val-
ues are provided in Table 1. The kOH values range from 5.4 � 107

(M�1 s�1) to 1.7 � 1010 (M�1 s�1). The total compound set was
divided into the training set and validation set through the prop-
erty sampling method (Leonard and Roy, 2006). This was accom-
plished by sorting the micropollutants according to their
descending kOH values, then taking one compound out of every
four compounds. Compounds taken out were used as the valida-
tion set, and the remaining compounds were used as the training
set. As a result, about 25% of the total data set was used for the val-
idation set (n = 89 for the training set, and n = 29 for the validation
set).

A large number of molecular descriptors were calculated using
DRAGON software (Milano Chemometrics and QSAR Research
Group, University of Milano-Bicocca, Milan, Italy), and these
descriptors were then used as independent variables for modeling.
The chemical name or registration number was used to search the
SMILES code of the chemical structure from the ChemIDplus
Advanced online database (United States National Library of
Medicine). The SMILES code of the chemical structure was then
used as input for the software DRAGON to generate the molecular
descriptors. As a result, 951 descriptors including constitutional
descriptors, topological descriptors, connectivity indices, informa-
tion indices, 2D autocorrelations, eigenvalue-based indices, 3D
MoRSE descriptors, WHIM descriptors, molecular properties, func-
tional group counts, and atom-centered fragments, etc. were calcu-
lated. A list of the DRAGON descriptors is available (Todeschini
et al., 2005). Most of these descriptors are reviewed in a textbook
by Todeschini and Consonni (2000). The correctness of the
SMILES code was then validated by comparison of the molecular
weights reported in the databases with those calculated by the
software. To minimize the redundant information, descriptors with
constant values among micropollutants (n = 142, mostly functional
group counts descriptors) were removed, and descriptors found to
be pairwise correlated by greater than 95% were excluded
(n = 110). Hence, 699 descriptors were used for QSPR modeling.

2.2. QSPR modeling

Multiple linear regression (MLR) was used in this study to iden-
tify a linear relationship between kOH and the above described set
of molecular descriptors. MLR is among the most widely used
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