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h i g h l i g h t s

� Equilibrium vapour pressure isotopes effects are predicted based on simple descriptors.
� An artificial neural network model was developed and validated.
� The neural network model was superior to a multi-linear regression model.
� The number of descriptors is critically discussed.
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a b s t r a c t

We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure
isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at
intermediate temperatures. We attempt to explore quantitative structure property relationships by using
artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it
with multi-linear regression (MLR). These approaches are based on the relationship between the
molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the
organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour
pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used
for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number
of 12C, 13C, 16O, 18O, 1H, 2H, OH functions, OD functions, C@O functions, Connolly Solvent Accessible Surface
Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the
natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical litera-
ture. Since the database is rather small, the leave-one-out procedure was used to validate both models.
Considering higher determination coefficients and lower error values, it is concluded that the multi-layer
perceptron provided better results compared to multi-linear regression. The stepwise regression
procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure
Property Relationship (QSPR) approach for isotopic studies is novel.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Transport and transformation in the atmosphere are among the
key processes that govern the distribution and fate of organic
chemicals in the environment. Hence, an important feature of the
partition of an organic compound in the environment is the quan-
titative description of how such a compound is distributed
between the gas phase and other relevant (condensed) phases

(Schwarzenbach et al., 2003). Moreover, the vapour pressure of a
compound is not only a measure of the maximum possible concen-
tration of a compound in the gas phase at a given temperature, but
it also provides important quantitative information on the attrac-
tive forces acting on the compound’s molecules in the condensed
phase. These properties are structure dependent (Godavarthy
et al., 2006; Gharagheizi et al., 2012). In the present study, we
are concerned with the equilibrium vapour pressure isotope effect
(EVPIE) of pairs of isotopologues, that is, molecules of the same
species but with differing heavy isotope distributions. For two
isotopologues with a heavy or light isotope, we define EVPIE as
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ln R (=ln P0/P), the ratio of the vapour pressures where P0 and P are
the vapour pressure of the light and heavy isotopologues, respec-
tively. A positive ln R characterizes a normal isotope effect
(the light isotopologue is more volatile), whereas a negative ln R
points to an inverse isotope effect. As ln(1 + u) � u when u is small
relative to 1, �ln R is approximately equal to the enrichment factor
e in environmental studies. The change in sign is needed to account
for the different definitions light/heavy or heavy/light, which were
used in classical and environmental literature, respectively. The
EVPIE can have an important influence during the volatilization
of organic compounds and pollutants (Wang and Huang, 2003;
Höhener et al., 2008; Kuder et al., 2009; Thullner et al., 2012;
Jeannottat and Hunkeler, 2012), making it of interest in environ-
mental forensics (source appointment) and the monitoring of
remediation. Studying vapour pressure isotope effects is a first step
towards the ultimate goal of describing partitioning in more
general terms, as e.g. applied for sorption to geosorbents
(Höhener and Yu, 2012). Therefore, it is intended to predict EVPIE
by a QSPR with easy to use inputs.

From a theoretical point of view, at a given temperature there
are two opposite processes involved in establishing an EVPIE:
evaporation and condensation of both isotopologues. These two
processes coexist until equilibrium is reached. The first process
can be described as a certain number of molecules thermally
jostling in the condensed phase, a proportion of which will
continuously acquire sufficient energy to overcome the forces of
attraction to their neighbouring molecules and escape from the
condensed phase. Meanwhile, in the vapour phase, there will be
continuous collisions of some vapour molecules with the surface
of the condensed phase. A fraction of the colliding molecules will
have so little kinetic energy, or will dissipate their energy upon
collision with the condensed surface, that rather than bounce back
into the vapour phase, they will be combined into the condensed
phase. Both processes are controlled primarily by molecule–
molecule attractions in the condensed phase and are characterized
by the amount of molecules in the vapour above the condensed
phase. In other words, a compound will be liquid or a solid at a
considered temperature if the forces between the molecules in
the condensed phase are strong enough to overcome the tendency
of the molecules to fly apart (Ivanciuc, 1999; Yao et al., 2001;
Bagheri et al., 2012).

The prediction of EPVIEs is desirable for studies addressing the
quantification of volatilization of liquids in the environment, such
as water (Craig and Gordon, 1965), solvents (Jeannottat and
Hunkeler, 2012), or petroleum hydrocarbons (Bouchard et al.,
2008; Höhener et al., 2008). All these studies showed that the
isotopic evolution during volatilization of organic liquids buried
in soil is governed by two processes, the EVPIE and the diffusion
effect. This diffusion effect is easy to predict since fractionation
by diffusion is simply caused by differences in molecular mass
and easily quantified by an equation originally given by Craig
(see Craig and Gordon, 1965). For the EVPIE, no easy estimation
method existed so far.

Measurement of an EVPIE for a pair of isotopologues was
traditionally done by the manometric differential between a pure
compound and its counterpart labelled at distinct positions with
a heavy isotope. In some cases, measurements were also based
on distillation (see Jancso and van Hook (1974) for details).
Theoretical predictions of EVPIE were time consuming or very
computational. Different models were proposed and summarized
in the review by Jancso and van Hook (1974): Lindemann (1919);
Friedmann (1962); Johns (1958) based on the Clausius–Clapeyron
equation; Rabinovich (1962) who used a thermodynamic equation.
Kiss et al. (1963) cited by Jancso and van Hook (1974) demon-
strated empirically that, at a given temperature, EVPIE is correlated
to the square root of the molecular weight of a compound. More

recently, Gharagheizi et al. (2012) used a Quantitative Structure
Property Relationship (QSPR) molecular approach to predict the
absolute vapour pressures on a very large dataset (1500 chemical
compounds, mostly organic, but without considering isotopic
substitution) by using an approach exploiting an artificial neural
network (ANN). They obtained good results, with an absolute aver-
age relative deviation of the predicted values of about 7%
(r2 = 0.990) over a temperature range between 55 to around
3040 K. However, isotope effects are usually in the permil (‰)
range and therefore cannot being predicted by this model.

Based on the work of Gharagheizi et al. (2012), we extended this
approach to develop a QSPR model to predict EVPIE of 130 organic
compounds (acids, alcohols, alkanes, alkenes, aromatics) with pairs
of isotopic substitution exploiting a subset of the dataset from
Jancso and Van Hook (1974). We excluded inorganic compounds
and organic compounds with other functional groups. Easily acces-
sible descriptors were first chosen (see Materials and Methods).
However, with these descriptors, isomers like propan-1-ol and pro-
pan-2-ol are not differentiated, and therefore the Connolly Solvent
Accessible Surface Area (CSA) was added as a further descriptor. This
set of 11 descriptors (all-set) was used to feed a multi-layer
perceptron (MLP) and a multi-linear regression (MLR) models. In
order to test simplification, a reduced set (stepwise-set) with only
six descriptors and without CSA was selected by a stepwise regres-
sion procedure made on all the dataset.

For each set with 11 or 6 descriptors, we compared the perfor-
mance of MLP models with various numbers of neurons in the
hidden-layers to find the optimal number of neurons. For the set
of descriptors considered, we also compared the performance of
the best MLP model to the MLR model. We further compared the
performance of the best MLP model with all the descriptors to
the best MLP model with the reduced set of descriptors. The same
comparison was also done with the MLR models.

2. Materials and methods

2.1. Database

We extracted 130 vapour pressure isotope effects (ln R) from
130 pairs of organic isotopologues (acids, alcohols, alkanes,
alkenes, aromatics). The values of these EVPIE come from the
review of Jancso and Van Hook (1974) and were measured at
different temperatures. These organic compounds presented as
pairs of isotopologues were treated for developing and validating
the QSPR model. To the best of our knowledge, this is one of the
largest databases available in the open literature of vapour
pressure isotope effects.

Of the 130 ln R values, 112 were used in the training set and the
remaining 18 were used for the test/validation dataset. To build
this validation dataset, we chose eighteen values of ln R between
all the four families (acids, alkanes, alkenes and alcohols) of isoto-
pologues present in the training dataset at various temperatures.

2.2. Determination of the molecular descriptors

The choice of molecular descriptors is crucial. We worked
within four constraints. Firstly, we were looking for easily-accessi-
ble molecular descriptors. Most models in the literature require
data such as boiling temperatures or molar volumes, which are
not available for each isotopologue. Secondly, the descriptors
should characterize the two isotopologues of each pair. Thirdly,
we need to identify descriptors that describe the link between
structure and the desired property (EVPIE). Fourthly, none of the
software available in the market was able to find descriptors to
make the difference between two isotopologues: to distinguish a
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