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Information about the distribution of chemical-production mass with respect to use and release is a major and
unavailable input for calculating population-scale exposure estimates. Based on exposure models and biomoni-
toring data, this study evaluates the distribution of total production volumes (and environmental releases if
applicable) for a suite of organic compounds. We used Bayesian approaches that take the total intake from our
exposure models as the prior intake distribution and the intake inferred from measured biomarker concentra-
tions in the NHANES survey as the basis for updating. By carrying out a generalized sensitivity analysis, we
separated the input parameters forwhich themodeled range of the total intake iswithin a factor of 2 of the intake
inferred from biomonitoring data and those that result in a range greater than a factor of 2 of the intake. This
analysis allows us to find the most sensitive (or important) parameters and the likelihood of emission rates for
various source emission categories. Pie charts of contribution from each exposure pathway indicate that chemical
properties are a primary determinant of the relative contribution of each exposure pathway within a given class
of compounds. For compounds with relatively high octanol–water partition coefficients (Kow) such as di-2-
ethylhexyl phthalate (DEHP), pyrene, 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47), and 2,2′,4,4′,5,5′-
hexabromodiphenyl ether (PBDE-153), more than 80% of exposure derives from outdoor food ingestion and/or
indoor dust ingestion. In contrast, for diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate
(DnBP), butylbenzyl phthalate (BBP), and naphthalene, all relatively volatile compounds, either inhalation
(indoor and outdoor) or dermal uptake from direct consumer use is the dominant exposure pathway. The
approach of this study provides insights on confronting data gaps to improve population-scale exposure
estimates used for high-throughput chemical prioritization.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The environmental health community has growing concerns about
many of the commercially available chemicals introduced into residen-
tial environments, resulting in exposure to these compounds and their
transformation products. Information about potential exposure and
adverse health effects in humans from residential uses is limited for
most chemicals. Therefore, there has been a growing need for research
to screen chemicals that may have potential health hazards, based on
exposure and toxicity, among tens of thousands of available commercial
chemicals (Cohen Hubal et al., 2010; Egeghy et al., 2011). Methods for
conducting rapid toxicological assessments are currently being utilized
to help evaluate potential hazards (Dix et al., 2007; Judson et al.,
2011; Wetmore et al., 2012). Similar methods for estimating exposure

levels for comparison with toxicity levels are needed to evaluate and
prioritize large numbers of compounds in a rapid and efficient manner.

Three primary types of information are required to parameterize
models used to estimate population-scale exposure levels: (1) chemical
properties, (2) chemical emission rates and/or total production volumes,
and (3) information about the mass of chemicals consumed in each use
and release category. Chemical properties can be estimated using quan-
titative structure–activity (property) relationship (QSA(P)R) models.
The U.S. Environmental Protection Agency (EPA) Estimation Program
Interface Suite (EPI Suite™) is one of the publicly available software
programs that allows one to compute chemical properties using a
unique chemical abstracts service (CAS) registry number or simplified
molecular-input line-entry system (SMILES) (U.S. EPA, 2014a). For
chemical emission rates and total production volumes, three available
databases of the U.S. EPA provide limited chemical emissions rates,
including the National-Scale Air Toxics Assessments (NATA) (U.S. EPA,
2009), the Toxics Release Inventory (TRI) Program (U.S. EPA, 2014b),
and the National Emissions Inventory (NEI) (U.S. EPA, 2014c). Total
production volumes are available in the U.S. EPA's Inventory Update
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Reporting (IUR) (U.S. EPA, 2008) or Chemical Data Reporting (CDR) sys-
tem (U.S. EPA, 2014d), but are rather uncertain as they are recorded in
“bins”, spanning several orders of magnitude for a given chemical. Also
scarce are both information and databases about how chemicals are
introduced to consumer products (e.g., food additives, personal care
products, or pesticides) and environments (e.g., indoors or outdoors).
This gap is a major impediment to generating exposure estimates for
high-throughput screening (Arnot et al., 2012; Mitchell et al., 2013;
Shin et al., 2012).

Accurate source inputs in high-throughput exposure models are
critical for estimating population-scale exposure levels. One key need
is the calculation of intake fraction (iF), the integrated intake of a com-
poundper unit of emission,which varies by several orders ofmagnitude
depending on the release scenario or the product use type (Bennett
et al., 2002). For example, given the same amount of release, the intake
rate of benzene from cigarette smoking is several orders of magnitude
higher than that from outdoor inhalation due to releases from automo-
biles (Bennett et al., 2002). In addition, evenwith equivalent amounts of
use, the magnitude of exposure to phthalates commonly used in both
personal care products and vinyl flooring (e.g., di-n-butyl phthalate,
di-iso-butyl phthalate) has also been shown to vary greatly depending
on the product use type (Guo and Kannan, 2013). The information
needed regarding the distribution of total production volumes to each
use and release category was also addressed in evaluating the exposure
to naphthalene inferred frommeasured concentrations in urine, finding
that estimated exposure is primarily determined by the proportion of
total production volumes emitted to the indoor environment, even
though the estimated magnitude of indoor emissions is much smaller
(0.3%) than that of outdoor emissions (99.7%) (Shin et al., 2013a;
Wambaugh et al., 2013).

In this study, we compared exposures inferred from biomarkers to
exposures estimated from fate and transport models to explore the
uncertainties associated with modeled iF and our lack of knowledge
regarding the distribution of total production volumes to each use and
release category for a suite of organic compounds. The exposure path-
ways for the modeled exposures include dermal uptake from direct
consumer use, indoor inhalation, indoor dermal uptake, indoor dust
ingestion, outdoor inhalation, and outdoor food ingestion. We assumed
that the total production volumes are distributed to direct dermal appli-
cation (e.g., fragrance, cosmetics), indoor residential consumer use
resulting in indoor emissions (e.g., couch, vinyl flooring), and outdoor
emissions.We then compared modeled exposure with estimated expo-
sure inferred from biomarkers collected in the National Health and
Nutrition Examination Survey (NHANES) (CDC, 2005, 2009).We identi-
fied critical uncertainties of model inputs (i.e., individual modeled iF
and the distribution of total production volumes) via a generalized sen-
sitivity analysis (Guven and Howard, 2007; Spear and Hornberger,
1980). This analysis addresses the critical need to obtain accurate
information of source emission distribution in generating exposure
estimates for high-throughput screening.

The objective of this study is to understand the importance of chem-
ical properties and the distribution of total production volumes among
different use and release categories on the magnitude of resulting
human exposures. In addition, we explain how source inputs can be
disaggregated to compute population-scale human exposure using
exposuremodels and biomonitoring data and how critical input param-
eters can be identified via a generalized sensitivity analysis.

2. Materials and methods

2.1. Overview

The overall approach involves four steps to develop and evaluate our
modelingmethods.Wefirst outline the information available for each do-
main of the model including biomarkers. Second, we describe how we
modeled exposure levels for each exposure pathway. Third, we explain

how a generalized sensitivity analysis is applied to identify critical inputs
of modeled exposures. Last, we revise and evaluate the likelihood of
emission rates for various source emission categories. The overview of
source-to-exposure models used in this study is also depicted in Fig. 1.

Population-scale exposure levels or intake rates can be calculated in
twoways. For each release environment, we can use standard exposure
models that account for cumulative intake based on human exposure
factors (e.g., inhalation/ingestion rates and time spent in microenviron-
ments) to estimate iF. Then, the mass introduced to a specific mode of
entry can be multiplied by iF for each release compartment and the
total intake then obtained by summing the intake from all possible
release compartments. Another method is to back-calculate the intake
rate from biomonitoring data as the concentrations in biological media
are likely to reflect actual body burden (Asimakopoulos et al., 2013;
Guo et al., 2013; Lorber and Egeghy, 2011; Ma et al., 2013; Shin et al.,
2013a). The intake rates from two approaches allow determining the
likely source emission distribution using Bayesian principles that take
the intake from our exposure models as the prior estimate of iF and
the intake from measured concentrations in the NHANES survey as
the updating datum.

2.2. Data sources

2.2.1. Selected compounds
We selected nine organic compounds for analysis based on the avail-

ability of both biomarker data in the NHANES survey and emissions/total
production data in the EPA databases during the period of 2001–2004.
The selected compounds include one phthalate [diethyl phthalate
(DEP)] primarily associated with direct consumer use such as fragrance
or cosmetics, one phthalate [di-iso-butyl phthalate (DiBP)] often used
in both polyvinyl chloride (PVC) products and personal care products,
three phthalates [di-n-butyl phthalate (DnBP), butylbenzyl phthalate
(BBP), di-2-ethylhexyl phthalate (DEHP)] with emissions from vinyl
flooring and PVC plastics directly to the air compartment of the indoor
environment (Dodson et al., 2012; Hauser and Calafat, 2005; Heudorf
et al., 2007), two polycyclic aromatic hydrocarbons (PAHs) [naphthalene
(Nap), pyrene (Pyr)] with both indoor and outdoor emission sources (Jia
and Batterman, 2010; U.S. EPA, 2014e), and two polybrominated
diphenyl ethers (PBDEs) [2,2′,4,4′-tetrabromodiphenyl ether (PBDE-
47), 2,2′,4,4′,5,5′-hexabromodiphenyl ether (PBDE-153)] used as flame
retardants resulting in continuous emissions to the home (Rahman
et al., 2001). The selected compounds represent a range of chemical
properties, spanning from relatively volatile compounds (e.g. DEP,
Nap) to those with a high affinity for organic materials and thus likely
to exhibit bioaccumulation (e.g. DEHP, PBDE-153). Chemical properties
for these nine studied compounds are listed in Table A1 in the Appendix.

2.2.2. Total production volumes and outdoor emissions
For five phthalates and two PAHs, we obtained total production

volume data from the U.S. EPA's 2002 IUR system (U.S. EPA, 2008).
The production data in the IUR system are reported as a range, with
maximum values being 2 to 50 times greater than minimum values.
To address this variance, we used the geometric mean of the end points
of the range to model exposures. For DnBP, DEHP, Nap, and Pyr, we
obtained additional emission rate estimates from the 2002 NATA
database (U.S. EPA, 2009).

For PBDE-47 and PBDE-153, neither total production volumes nor
outdoor emission rates are available in the EPA databases. Thus, we
used the reported production volume of PentaBDE and OctaBDE along
with percentmass composition of PBDEs in PentaBDE andOctaBDE prod-
ucts to estimate the total production volumes of PBDE-47 and PBDE-153.
PBDE-47 is amajor PBDE-congener in PentaBDE and PBDE-153 is used in
both PentaBDE and OctaBDE products. Based onmarket demand, the es-
timate of PentaBDE total production volume in the Americas (i.e., North,
Central, and South America) is 7100 metric tons in 2001 (Birnbaum and
Staskal, 2004; UNEP, 2007a). The global production for OctaBDE was
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