
Comparing land use regression and dispersion modelling to assess
residential exposure to ambient air pollution for epidemiological studies

Kees de Hoogh a,b,c,⁎, Michal Korek c, Danielle Vienneau a,b, Menno Keuken e, Jaakko Kukkonen f,
Mark J. Nieuwenhuijsen g,h,i, Chiara Badaloni j, Rob Beelen k, Andrea Bolignano l, Giulia Cesaroni j,
Marta Cirach Pradas g,h,i, Josef Cyrys m,n, John Douros o, Marloes Eeftens a,b,k, Francesco Forastiere j,
Bertil Forsberg p, Kateryna Fuks q, Ulrike Gehring k, Alexandros Gryparis r, John Gulliver c, Anna L Hansell c,s,
Barbara Hoffmann q,t, Christer Johansson u, Sander Jonkers e, Leena Kangas f, Klea Katsouyanni r,v,
Nino Künzli a,b, Timo Lanki w, Michael Memmesheimer x, Nicolas Moussiopoulos o, Lars Modig p,
Göran Pershagen d, Nicole Probst-Hensch a,b, Christian Schindler a,b, Tamara Schikowski a,b,q, Dorothee Sugiri q,
Oriol Teixidó y, Ming-Yi Tsai a,b,z, Tarja Yli-Tuomi w, Bert Brunekreef k,aa, Gerard Hoek k, Tom Bellander d,ab

a Swiss Tropical and Public Health Institute, Basel, Switzerland
b University of Basel, Basel, Switzerland
c MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
d Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
e Netherlands Organization for Applied Research, Utrecht, The Netherlands
f Finnish Meteorological Institute, Helsinki, Finland
g Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
h IMIM (Hospital del Mar Research Institute), Barcelona, Spain
i CIBER Epidemiología y Salud Pública (CIBERESP), Spain
j Epidemiology Department, Lazio Regional Health Service, Rome, Italy
k Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands
l Environmental Protection Agency, Lazio Region, Italy
m Helmholtz Zentrum München, German Research Center for Environmental Health, Institutes of Epidemiology I and II, Neuherberg, Germany
n University of Augsburg, Environmental Science Center, Augsburg, Germany
o Laboratory of Heat Transfer and Environmental Engineering, Aristotle University of Thessaloniki, Aristotle University, Thessaloniki, Greece
p Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Sweden
q IUF Leibniz Research Institute for Environmental Medicine, University of Düsseldorf, Düsseldorf, Germany
r Department of Hygiene, Epidemiology and Medical Statistics University of Athens, Medical School, Athens, Greece
s Directorate of Public Health and Primary Care, Imperial College Healthcare NHS Trust, London, UK
t Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
u Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
v Department of Primary Care & Public Health Sciences and Environmental Research Group, King's College London, United Kingdom
w Department of Environmental Health, National Institute for Health and Welfare (THL), Kuopio, Finland
x Rhenish Institute for Environmental Research (RIU), Köln, Germany
y Energy and Air quality Department, Barcelona Regional, Barcelona, Spain
z Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
aa Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
ab Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden

Environment International 73 (2014) 382–392

⁎ Corresponding author at: Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051, Basel, Switzerland. Tel.: +41 61 284
8749; fax: +41 61 284 8105.

E-mail address: c.dehoogh@unibas.ch (K. de Hoogh).

http://dx.doi.org/10.1016/j.envint.2014.08.011
0160-4120/© 2014 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Environment International

j ourna l homepage: www.e lsev ie r .com/ locate /env int

http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2014.08.011&domain=pdf
http://dx.doi.org/10.1016/j.envint.2014.08.011
mailto:c.dehoogh@unibas.ch
http://dx.doi.org/10.1016/j.envint.2014.08.011
http://www.sciencedirect.com/science/journal/01604120


a b s t r a c ta r t i c l e i n f o

Article history:
Received 11 July 2014
Accepted 19 August 2014
Available online 16 September 2014

Keywords:
Land use regression
Dispersion modelling
Air pollution
Exposure
Cohort

Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individ-
ual air pollution exposure in population studies. Few comparisons have however beenmade of the performance
of these methods.
Objectives:Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences
between LUR and DM estimates for NO2, PM10 and PM2.5.
Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised
monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared
LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for
PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20–40 ESCAPE
monitoring sites in each area.
Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual
average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19–0.89), 0.39 (0.23–0.66) and 0.29 (0.22–0.81)
for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. Themedian Pearson R correlation
coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09–0.86) for NO2; 0.58
(0.36–0.88) for PM10 and 0.58 (0.39–0.66) for PM2.5.
Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for
PM10 and PM2.5, with large variability across areas. DMpredicted amoderate to large proportion of themeasured
variation for NO2 but less for PM10 and PM2.5.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of epidemiological studies have shown a clear asso-
ciation between long-term ambient air pollution exposure and adverse
health effects (WHO, 2013). Several of these studies estimated individ-
ual air pollution exposures from stationary monitoring data, e.g. by
using the nearest air pollution monitor to represent the pollution in en-
tire cities (Dockery et al., 1993) to more complex approaches including
spatial interpolation and kriging (Brauer et al., 2008; Künzli et al., 2005).
Such methods provide estimates of large-scale spatial differences in air
pollution concentrations, but are less effective in assessing intra-urban
variation particularly when the number of monitoring sites is small. Re-
cent studies have focused on intra-urban variation of air pollution, using
indicators or proxies such as distance to the nearest road as well as
pollutant levels estimated by land use regression (LUR), dispersion
modelling (DM) including Chemical transport models (CTM) and
hybrid models (HEI, 2010).

The LUR method, first developed by Briggs et al. (1997), uses least
squares regression to combine monitored data with Geographic Infor-
mation System (GIS)-based predictor data reflecting pollutant sources,
to build a prediction model applicable to non-measured locations, e.g.
residential addresses of cohort members. LUR modelling has been in-
creasingly used in epidemiological studies because it is relatively
cheap and can be easily implemented on the basis of purpose-
designed monitoring campaigns or routinely measured concentrations
and appropriate geographic predictors of air pollution sources (Hoek
et al., 2008).

DMs are based on detailed knowledge of the physical, chemical, and
fluid dynamical processes in the atmosphere. DMs use information on
emissions, source characteristics, chemical and physical properties of
the pollutants, topography, and meteorology to model the transport
and transformation of gaseous or particulate pollutants through the at-
mosphere to predict, e.g., ground level concentrations (Holmes and
Morawska, 2006; Kukkonen et al., 2012). Gaussian based DMs were
originally developed as air quality management tools but have also
been used in environmental epidemiology to model long-term expo-
sures (Bellander et al., 2001; Wu et al., 2011). Chemical Transport
Models have also been used to model short- and long-term exposure
periods (Hennig et al., 2014). Few studies to date have conducted com-
parisons between LUR and DMs for their performance in estimating ex-
posures (Beelen et al., 2010; Cyrys et al., 2005; Dijkema et al., 2011;
Gulliver et al., 2011; Marshall et al., 2008; Sellier et al., 2014). These
studies included different models, spatial resolution, pollutants and
study areas, factors likely to have contributed to inconsistent findings

within individual studies. As both LUR and DM are applied in epidemi-
ology, there is a need formore comparison studies of thesemethods, ad-
dressing their respective advantages and strengths depending on the
specific air pollution and health-related questions which are sought to
be answered.

We compare LUR and DM to assess spatial variation of annual aver-
age ambient air pollution estimates at residential addresses within the
framework of the European Study of Cohorts for Air Pollution Effects
(ESCAPE), not taking into account population activity patterns or indoor
air pollution. The ESCAPE study developed LUR models to estimate ex-
posure at the residential addresses of cohort participants based on uni-
form monitoring campaigns and uniform modelling approaches in 36
study areas (Beelen et al., 2013; Cyrys et al., 2012; de Hoogh et al.,
2013; Eeftens et al., 2012a,b). To several of these study areas we apply
DM or use existing DM output, allowing for an in depth comparison to
better understand the differences and/or agreements between LUR
and DM estimates for use in epidemiological studies with long-term ex-
posures.We include a range of exposure environments and populations
across Europe, and focus, in particular, on the differences in estimated
exposure at the individual participant level which is most relevant for
interpretation of epidemiological studies.

2. Materials and methods

Weestimated annual average outdoor air pollution concentrations for
NO2 in 13, PM10 in 7 and PM2.5 in 4 of the 36 European cities/areas includ-
ed in the ESCAPE study using both LUR and DM (Umeå region, Sweden;
Stockholm County, Sweden (PM10); Helsinki—Vantaa region, Finland
(PM2.5); Bradford, UK; London, UK (PM10); Netherlands (PM10 &
PM2.5); Ruhr Area (PM10 & PM2.5), Germany; Basel, Switzerland; Geneva,
Switzerland; Lugano, Switzerland (PM10); Rome, Italy (PM2.5); Barcelona,
Spain (PM10); Athens, Greece (PM10)). The selection of study areas was
based on the availability of existing dispersion models. A general discus-
sion of these two modelling approaches is reported elsewhere (Hoek
et al., 2008; Özkaynak et al., 2013).

We conducted several comparisons, depending on the comparability
of the model outputs. The main comparison between the methods was
made at the residential address of cohorts participants (referred to as
LUR-DM). We also compared the DM estimates withmeasured concen-
trations at the ESCAPE monitoring sites. This was an independent vali-
dation, as monitoring data from the ESCAPE sites were not used as
input data in the DM models. Recent studies have documented that
the model R2 and the leave-one out cross-validation R2 overestimate
the predictive ability of LUR models at independent sites (Basagaña
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