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a b s t r a c t

This work develops a new approach for delineating sites that are contaminated by multiple soil heavy
metals and applies it to a case study. First a number of contaminant sample data are transformed into
multiple spatially un-correlated factors using Uniformly Weighted Exhaustive Diagonalization with
Gauss iterations (U-WEDGE). Sequential Gaussian simulation (sGs) is then used to generate sets of re-
alizations of each resultant factor. These are then transformed into sets of sGs contaminant distribution
realizations, which are then used to analyze the local and spatial (global) uncertainties in the distribution
and concentration of contaminants via joint simulation. Finally, Info-Gap Decision Theory (IGDT) is used
to consider different monitoring and or remediation regimes based on the analysis of contaminant
realization spatial uncertainty. In our case study each heavy metal contaminant was considered indi-
vidually and together with all other heavy metals; as the number of heavy metals considered increased,
higher critical proportion values of local probability were chosen to obtain a low global uncertainty (to
provide high reliability). Info-Gap Decision Theory (IGDT) yielded the most appropriate critical propor-
tion values which minimized information loss in terms of specific goals. When the false negative rate is
set to zero, meaning that it is necessary to monitor all potentially polluted areas, the corresponding false
positive rates are at least 63%, 65%, 66%, 68%, 70%, and 78% to yield robustness levels of 0.50, 0.60, 0.70,
0.80, 0.90, and 1.00 respectively. However, when the false negative rate tolerance threshold is raised to
50%, the false positive rate tolerance which yields robustness levels of 0.50, 0.60, 0.70, 0.80, 0.90 and 1.00
drop to 12%, 14%, 15%, 18%, 20%, and 39%. The case study demonstrates the effectiveness of the developed
approach at making robust decisions concerning the delineation of sites contaminated by multiple heavy
metals.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

While the adverse effects of soil heavy metal pollutants are well
known, estimating their distribution accurately has proven to be a
difficult task. Although heavy metals found in soil can arise natu-
rally from parent materials, anthropogenic sources, such as those
originating from industrial and or agricultural activities, are of
greatest concern since they are complex and are primarily
responsible for dangerous concentrations of soil metalloids (Lin
et al., 2010; Escarr�e et al., 2011; Guill�en et al., 2012; Mmolawa
et al., 2011; Nanos and Martín, 2012; Petrotou et al., 2012; Lv

et al., 2013; Massas et al., 2013; Martín et al., 2013; Werkenthin
et al., 2014), particularly in urbanized and industrialized regions
globally. Due to the complicated nature of soil heavy metal con-
taminants and the risks they pose to ecosystems, agricultural pur-
suits and or human health, robust decision-making procedures for
the delineation of contaminated sites, or the execution of compe-
tent monitoring programs based on previously sampled data is a
concern among bodies responsible for the monitoring and reme-
diation of heavy metal pollutants all around the world. Accurately
mapping heavy metal soil contaminants while considering the
relative level of uncertainty intrinsic to different projections or
areas is essential to assessing potential environmental pollution,
designating future sampling sites and prioritizing remediation sites
(Huo et al., 2012). Uncertainty arises from technical limitations of
available sampling instruments, limitations of the analytical
methods (Stewart and Purucker, 2011) and the natural
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heterogeneity of parent materials (Lin et al., 2010). In addition,
collected sample data may exhibit significant uncertainty owing to
extremely complex spatial patterns or errors in measurement of
pollution sources (Lin et al., 2011). Spatial uncertainty should
therefore be considered while making robust decisions concerning
the delineation of soil contamination. Robust decision analysis tools
are widely considered necessary in the assessment of estimated
uncertainty (Lin et al., 2010), and to manage environmental
contamination (O'Malley and Vesselinov, 2014). A structured
approach, such as Information-Gap Decision Theory (IGDT) can be
used to make a robust decision which takes multiple sources of
uncertainty into consideration, such as those associated with
varying projection procedures. IGDT can reveal the uncertainty
associated with different decisions, and can yield an acceptable
outcome even when decisions are made under the worst-case
scenario (Harp and Vesselinov, 2013; Korteling et al., 2013;
Matrosov et al., 2013; O'Malley and Vesselinov, 2014).

Geostatistical methods are widely used to estimate or simulate
the distributions of heavy metal soil contaminants and to estimate
its spatial patterns; these include indicator kriging (Cressie, 1993;
Goovaerts, 1997; Lin et al., 2011) and the kriging interpolation
procedure to locate pollution and hotpots of heavy metals in soil
(Goovaerts, 1997; Li and Feng, 2012; Li et al., 2013; Lin et al., 2014a,
2011). Recently, geostatistical conditional simulationmethods, such
as sequential Gaussian simulation (sGs) (S�anchez-Vila et al., 2004;
Jagat et al., 2008) and Sequential Indicator Simulation (SIS) were
used to simulate the spatial distribution of heavy metals in soil and
to explore spatial uncertainty in their concentrations (Atkinson and
Lloyd, 2009; G�omez-Hern�andez et al., 1999). However, in soil sci-
ence, methods for simulating a single variable of interest may be
unsuitable for generating spatial distributions due to their failure at
reproducing correlations between variables (Rondon, 2012; Tajvidi
et al., 2013). Moreover, as the number of variables increases,
decorrelation methods are preferred owing to their better
computational efficiency (Rondon, 2012). Accordingly, multivariate
geostatistical methods, such as Sequential Gaussian Co-simulation
(joint simulation) and Sequential Indicator Co-simulation, have
been used to map multiple heavy metals in soils (Franco et al.,
2006; Yao et al., 2013; Zhao et al., 2008). However, before per-
forming such sequential co-simulation, it is necessary to fit vario-
grams and cross-variograms with a linear model of
coregionalisation in order to satisfy the positive definiteness con-
dition for solving the kriging equation. Unfortunately, for a larger
set of variables, it is difficult to fit the model in such a way.

Due to the difficulties involved in co-simulation, preliminary
decorrelation methods such as principal component analysis (PCA),
the method of minimum/maximum autocorrelation factors (MAF),
and Uniformly Weighted Exhaustive Diagonalization with Gauss
iterations (U-WEDGE) have been developed (Mueller and Ferreira,
2012; Lin et al., 2015). The Principle Component Analysis (PCA)
method that incorporates geostatistical methods has been widely
used to map multiple heavy metals in soil (Li and Feng, 2012; Lin,
2002; Nanos and Martín, 2012; Petrotou et al., 2012; Lv et al.,
2013; Martín et al., 2013). In the PCA method, the original data
are rotated to orthogonal factors using PCA, but these factors may
remain correlated at distances greater than zero (Wackernagel,
2003). The method of MAF assumes that the semivariogram func-
tion of the attributes can be modeled by a two-structured linear
model of coregionalisation, following the transformation of the
original data into a space where they are uncorrelated (da Silva and
Costa, 2014). Based on the above assumption, MAF transforms the
original data into non-orthogonal factors with weak spatial corre-
lation by diagonalizing a pair of symmetric coregionalisation
matrices (Mueller and Ferreira, 2012; Lin et al., 2015). Sohrabian
and Tercan (2014) also used Minimum Spatial Cross-correlated

(MSC) factors in the simulation process of some attributes of an
andesite quarry and compared the results to those of MAF simu-
lations. They showed that MSC-simulations have some advantages
over MAF-simulations. Tajvidi et al. (2013) integrated MAF and sGs
conditional simulation to classify mineral resources and to assess
uncertainty in gradeetonnage curves. Barnett et al. (2014) found
that MAF and its related spatial decorrelation are unlikely to make
variables independent of one another when complex multivariate
data are considered. To efficiently perform spatial decorrelation in
multivariate geostatistical simulations, Tichavsky and Yeredor
(2009) presented a more general approach to Approximate Joint
Diagonalization (AJD), called the U-WEDGE method. U-WEDGE
makes no assumption regarding the semivariogram function
structure of the attributes. The resultant realizations of multivariate
attributes that are simulated via AJD are similar to those generated
by a full co-simulation (Bandarian et al., 2010; Barnett et al., 2014;
Lin et al., 2015).

Decision analysis is based on an axiomatic decision theory
which utilizes findings from decision making studies (Parnell et al.,
2013), i.e. Information-Gap Decision Theory (IGDT) and multi-
criteria decision analysis (MCDA). Although realizations obtained
by geostatistical simulations such as sGs and SIS can yield possible
distributions of heavy metals in soils and can even quantify spatial
uncertainty in their concentrations, the tools are unable to provide
a structured means of assessing the uncertainty intrinsic to
different remediation or pollution monitoring decisions. Fortu-
nately, IGDTmay provide just such a structured approach (Harp and
Vesselinov, 2013; Korteling et al., 2013; Matrosov et al., 2013;
O'Malley and Vesselinov, 2014). The Information-Gap decision
theory is a decision analysis approach which provides a general
framework for decision analyses that seeks to maximize the
robustness of a decision given a minimum performance require-
ment under severe uncertainty. An Information-Gap Decision
Analysis has the following three components (Harp and Vesselinov,
2013): (1) an appropriate system model, (2) an uncertainty model,
which influences the decision making, and (3) decision perfor-
mance goals. These components are used to derive immunity
functions that characterize the robustness of a decision, given a
minimum performance requirement. In the context of environ-
mental management, this method maximizes the robustness of a
decision against uncertainty given a minimum performance
requirement. Korteling et al. (2013) quantified the uncertainty of
the projected demand for water resources and used IGDT to
quantify the robustness of each water resources management op-
tion. IGDT provided a comprehensive analysis of water resource
systems, supporting the development of an adaptive management
approach to meet future demands under severe uncertainty. In
another example, IGDT was used to evaluate different water
resource plans based on various reliable simulation models in the
Thames basin, UK (Matrosov et al., 2013). Harp and Vesselinov
(2013) used IGDT to characterize the uncertainty, due to the
incompleteness of available information, intrinsic to different
hydrogeological contaminant remediation decisions. O'Malley and
Vesselinov (2014) compared two remedial scenarios with the
same cost to demonstrate the applicability of IGDT to decision-
making in the field of groundwater remediation; their results
suggested that IGDT is a practical tool for decision makers, allowing
them to take uncertainties and implementation costs into account
while planning remediation efforts.

In this work, the concentrations of eight soil heavy metals found
in Changhua county of Taiwan, including arsenic (As), cadmium
(Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead
(Pb), and zinc (Zn), were transformed into eight spatially uncorre-
lated factors, using the U-WEDGE method. Next, sGs was used to
generate 1000 sets of realizations of each resultant factor, which
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