Environmental Pollution 205 (2015) 240-249

Contents lists available at ScienceDirect

Environmental Pollution

Effects of unionised ammonia on tropical freshwater organisms: Implications on temperate-to-tropic extrapolation and water quality guidelines

Zhen Wang, Kenneth M.Y. Leung^{*}

The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China

ARTICLE INFO

Article history: Received 12 January 2015 Received in revised form 12 May 2015 Accepted 21 May 2015 Available online xxx

Keywords: Unionised ammonia Freshwater ecosystems Safety extrapolation factor Acute-to-chronic ratio Water quality guidelines

ABSTRACT

Unionised ammonia (NH₃) is highly toxic to freshwater organisms. Yet, most of the available toxicity data on NH3 were predominantly generated from temperate regions, while toxicity data on NH3 derived from tropical species were limited. To address this issue, we first conducted standard acute toxicity tests on NH₃ using ten tropical freshwater species. Subsequently, we constructed a tropical species sensitivity distribution (SSD) using these newly generated toxicity data and available tropical toxicity data of NH₃, which was then compared with the corresponding temperate SSD constructed from documented temperate acute toxicity data. Our results showed that tropical species were generally more sensitive to NH₃ than their temperate counterparts. Based on the ratio between temperate and tropical hazardous concentration 10% values, we recommend an extrapolation factor of four to be applied when surrogate temperate toxicity data or temperate water quality guidelines of NH₃ are used for protecting tropical freshwater ecosystems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ammonia is considered as one of the most important pollutants in the freshwater environment. It can enter natural aquatic systems through direct means such as municipal sewage effluent discharges and excretion of nitrogenous wastes from animals, and indirect means such as natural nitrogenous organic matter breakdown in contaminated sediments (Thurston and Russo, 1986). In freshwater aqueous solution, unionised ammonia (NH₃) exists in an equilibrium with ionised ammonia (NH₄⁺), in which the concentration of NH₃ is positively correlated with water temperature and pH (Emerson et al., 1975). Harmful effects of ammonia on aquatic organisms have been extensively studied. In fish, for instance, ammonia can disrupt the normal functions of internal organs such as damage to the gill epithelium (Lang et al., 1987) and disruption of normal metabolic functioning of the liver and kidneys (Arillo et al., 1981).

To better control the release of ammonia and protect freshwater organisms from the toxicity of ammonia, a number of guidelines or criteria for ammonia have been established around the globe

Corresponding author. E-mail address: kmyleung@hku.hk (K.M.Y. Leung). NH₃ at pH 8.0 (warm-water) for protecting 95% of freshwater species (ANZECC & ARMCANZ, 2000). Canada recommended a comparatively lower WOG value for NH₃ at 19 μ g L⁻¹ NH₃ which was derived from chronic toxicity data (CCME, 2010). The Environment Protection Agency of the United States (US EPA) set a more stringent chronic water quality criterion at 1.9 mg L⁻¹ Total Ammonia Nitrogen (TAN; $= 9.1 \ \mu g \ L^{-1} \ NH_3$) at pH 7.0 and 20 °C, while its acute criterion was as high as 17 mg L^{-1} TAN (= 81 $\mu g \, L^{-1}$ NH₃) (US EPA, 2013). Nonetheless, the guidelines for ammonia in tropical regions are more lacking, except that South Africa recommended acute and chronic WQGs at 100 μ g L⁻¹ NH₃ and 15 μ g L⁻¹ NH₃, respectively (DWAF, 1996), Hong Kong set up the standard of 2 mg L⁻¹ TAN at 30 °C (HKEPD, 1997), and Malaysia required a more stringent criteria of 0.3 mg L⁻¹ TAN (Department of Environment Malaysia, 1985) for protecting freshwater ecosystems. To date, most of the documented acute toxicity test results for

(Table 1). For example, Australian and New Zealand governments jointly recommended water quality guideline (WQG) of 30 μ g L⁻¹

ammonia were primarily generated from temperate species in North America and Europe (Kwok et al., 2007). Acute toxicity data on ammonia derived from tropical species are limited except for two taxonomic groups of species namely, amphibians and fishes. Most tropical WQGs and ecological risk assessment (ERA) studies

journal homepage: www.elsevier.com/locate/envpol

Table 1

Summary of current freshwater ammonia water quality guidelines (WQGs). All WQGs in terms of unionised ammonia (NH₃) concentrations are expressed as NH₃ form. Bold letter for each WQG represents the value collated or calculated from the original reports/documents at pH 7.0 and 20 °C for temperate and pH 7.0 and 25 °C for tropics (except Australia and New Zealand at pH 8.0 and Hong Kong at 30 °C). NA indicates that data are not available.

Country/Region	Water quality guideline (WQG)			Trigger values	п	Source
	Acute/Chronic	$NH_3 (\mu g L^{-1})$	Total Ammonia Nitrogen (TAN; mg L ⁻¹)			
Australia and New Zealand	Chronic	20 (pH > 8.0 and cold-water) 30 (pH 8.0 and warm-water)	NA NA	HC5: 900 μ g L ⁻¹ TAN	44	(ANZECC & ARMCANZ, 2000)
Canada	Chronic	19	3.96	Lower-hand of HC5: 19 μg L ⁻¹ NH ₃	13	(CCME, 2010)
British Columbia, Canada	Acute	92 ^a	19.2	NA	NA	(Nordin and Pommen, 2009)
	Chronic	5.9 ^a	1.22	NA	NA	
Ontario, Canada	Chronic	20	42 ^b	NA	NA	(Ontario Ministry of the Environment, 1994)
China	Chronic	20	42 ^b	NA	NA	(State Environmental Protection Administration, 1989)
European Union	Chronic	0.96 ^a	0.2 (stringent)	NA	NA	(EU, 2006)
		4.8 ^a	1.0 (imperative)	NA	NA	
England and Wales, UK	Chronic	1.2 ^a	0.25 (high status)	NA	NA	(Water Framework Directive, 2008)
-	Chronic	2.9 ^a	0.6 (good status)	NA	NA	
Limerick, Ireland	Chronic	20	42 ^b	NA	NA	(Abattoirs Act, 1988)
US EPA	Acute	81 ^a	17	FAV ^d : 33.52 mg L^{-1} TAN	69	(US EPA, 2013)
	Chronic	9.1 ^a	1.9	FCV^{d} : 1.887 mg L ⁻¹ TAN	16	
Connecticut, US	Acute (1 h)	115 ^c (salmonids present)	24 ^b	NA	NA	(Connecticut Department of Environmental
	Chronic (30 d)	20 ^c (fish early life stages present)	4.1 ^b	NA	NA	Protection, 2011)
	Chronic (4 d)	50 ^c	10.3 ^b	NA	NA	
Illinois, US	Acute	72 ^a	15	NA	NA	(Illinois Environmental Protection Agency, 2002)
	Chronic	20 ^a	4.15 (fish early life stages present)	NA	NA	
Indiana. US	Acute	93	19.3	NA	NA	(Indiana Government, 1996)
Minnesota, US	Chronic	16 (cold-water)	3.4 ^b	NA	NA	(Minnesota Pollution Control Agency, 2008)
New Yerk UC	Anuta	40 (cool- and warm-water)	8.4	NA	NIA	(New York State Department of Fewierenesstel
New YOR, US	Acute	93	23		INA	(New York State Department of Environmental
	Anita	8.3	2.1		INA	(Ohio Environmental Protection Accorn. 2014)
01110, 05	Acute	02			INA	(Onio Environmental Protection Agency, 2014)
	Chronic	28	5.9 (warm-water; December to February)	INA	NA	
		15 ^a	3.2 (warm-water; March to November)	NA	NA	
		7.2 ^a	1.5 (cold-water)	NA	NA	
Oregon, US	Acute (1 h)	93 ^a	19.5°	NA	NA	(Oregon Department of Environmental Quality, 2014)
0	Chronic (4 d)	8.3 ^a	1.8 ^c	NA	NA	
Wisconsin, US	Acute	115 ^a	24.1	NA	NA	(Wisconsin Department of Natural Resources, 2004)
South Africa	Acute	100	17.9 ^b	NA	NA	(DWAF, 1996)
	Chronic	15	2.7 ^b	NA	NA	• • •
Malaysia	Chronic	2.1 ^a	0.3	NA	NA	(Department of Environment Malaysia, 1985)
Hong Kong	Chronic	20 ^a	2 (at 30 °C)	NA	NA	(HKEPD, 1997)

^a Original standard in TAN, transformed to NH₃ at pH 7.0 and 20 °C for temperate and pH 7.0 and 25 °C for tropics.

^b Original standard in NH₃, transformed to TAN at pH 7.0 and 20 °C for temperate and pH 7.0 and 25 °C for tropics.

^c Original standard in pH- and temperature-dependent equations, NH₃ at pH 7.0 and 20 °C was calculated.

^d FAV: Final Acute Value; FCV: Final Chronic Value.

Download English Version:

https://daneshyari.com/en/article/6316660

Download Persian Version:

https://daneshyari.com/article/6316660

Daneshyari.com