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a b s t r a c t

Anthropogenic and biogenic controls on the surfaceeatmosphere exchange of CO2 are explored for three
different environments. Similarities are seen between suburban and woodland sites during summer,
when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions
from human activities dominate urban and suburban fluxes; building emissions increase during cold
weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect
diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary be-
tween working days and non-working days, except at the woodland site. Suburban vegetation offsets
some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Obser-
vations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges
are significantly different between sites, demonstrating the impacts of increasing urban density (and
decreasing vegetation fraction) on the CO2 flux to the atmosphere.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Carbon dioxide concentrations continue to increase globally,
reaching 400 ppm on a daily basis at Mauna Loa in 2013 (The
Keeling Curve, 2014). Over 70% of global greenhouse gas emis-
sions are from urban areas (IEA, 2012). While a large number of
studies have documented the seasonal dynamics of carbon fluxes of
vegetated ecosystems (e.g. Schmid et al., 2000; Baldocchi et al.,
2001; Aubinet et al., 2012), comparable measurements from ur-
ban areas remain relatively limited (see reviews by Velasco and
Roth, 2010; Grimmond and Christen, 2012; Christen, 2014;
Weissert et al., 2014). The earliest measurements in cities began
in the mid-1990s (Grimmond et al., 2002; Nemitz et al., 2002), yet
only very recently have multi-year urban fluxes been published
(Pawlak et al., 2010; Bergeron and Strachan, 2011; Crawford et al.,
2011; J€arvi et al., 2012; Liu et al., 2012; Peters and McFadden,

2012). Thus understanding of CO2 exchanges based on direct ob-
servations in regions with large urban fluxes is limited. Instead,
estimates of emissions are mostly based on fuel consumption in-
ventories, but these tend to have coarse spatial and temporal res-
olution and do not include biogenic processes such as
photosynthetic uptake by urban vegetation (J€arvi et al., 2012;
Crawford and Christen, 2014). However, to explore the potential
impacts of urban planning schemes and policy decisions, or to
make predictions about future climates, improved understanding
of processes relevant to the urban carbon balance is required. Pataki
et al. (2011) highlight the need for more rigorous evaluation of
urban greening schemes, which should include both positive and
negative impacts on the ecosystem as awhole, realistic cost-benefit
analyses and consideration of site-specific and species-dependent
behaviour.

Per unit area, annual CO2 exchanges measured in urban areas
greatly exceed those from nearby natural ecosystems: average
annual CO2 release in Helsinki is forty times larger than the uptake
by a nearby wetland and eight times larger than the uptake by a
boreal forest (J€arvi et al., 2012). In highly-vegetated Baltimore,
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however, net CO2 release is similar in magnitude to the net uptake
of nearby forests (Crawford et al., 2011). Few campaigns have
quantified CO2 exchanges for different urban densities concur-
rently. Coutts et al. (2007) presented fluxes from two suburban
sites in Melbourne, and Bergeron and Strachan (2011) compared
fluxes from urban, suburban and agricultural sites in Montreal.
Measurements of CO2 concentration across urban-to-rural gradi-
ents in the US include the work of Strong et al. (2011) in Salt Lake
Valley and Briber et al. (2013) in Boston. Given the apparent
inability of vegetation to assimilate large enough quantities of CO2
to offset emissions (Pataki et al., 2011; Weissert et al., 2014),
quantifying the effect of human behaviour on CO2 exchange be-
comes an even more critical area for research. Approaches include
long-term observational campaigns which encompass policy
changes, for example Song and Wang (2012) assessed the impact
of traffic reduction due to the Beijing Olympics in 2008, and
combining measurements and models to better inform the attri-
bution of measured CO2 emissions to various human activities
such as building energy use, transport and metabolism (e.g.
Christen et al., 2011; Strong et al., 2011).

The objective of this study is to relate observed CO2 exchanges to
physical processes, through consideration of meteorological con-
ditions and surface characteristics. Direct eddy covariance mea-
surements of CO2 fluxes from three very different land uses (urban,
suburban and woodland) over the same period are compared. The
sites are located within one of the most densely populated regions
of Europe: southern England. This region, which includes London,
has been extensivelymodified by human activities in both rural and
urban areas. Atmospheric controls are considered first, by
comparing the meteorology observed at each site. After demon-
strating the similarity in climatic conditions, links between CO2 flux
and surface characteristics (e.g. land cover, urban density) are
explored.

2. Materials and methods

2.1. Description of sites

In this paper measurements undertaken at three sites
70e100 km apart and at approximately the same latitude in
southern England (Table 1, Fig. 1) are compared. These are a dense
urban environment in central London (U); a predominantly resi-
dential suburban site in Swindon (S); and a deciduous oak wood-
land at the Alice Holt Research site (W). Additional details are
provided elsewhere (London (Kotthaus and Grimmond, 2012;

2014a,b); Swindon (Ward et al., 2013); Alice Holt (Wilkinson
et al., 2012)).

Across the sites there is a gradient of impervious to pervious
land cover, with London having 81% of the plan area covered by
roads and buildings, Swindon 49% and Alice Holt effectively 0%
(Table 1). The heights of the roughness elements (i.e. buildings and
trees) are similar in London and Alice Holt (>20 m) but smaller in
Swindon (z6 m). There is very little vegetation at the central
London site; trees are mainly London plane (Platanus hispanica) and
grass lawns are mainly confined to small public gardens. In Swin-
don, grass is the predominant surface cover and grows alongside
roads as well as in residential gardens, recreational areas and on
undeveloped land. Trees comprise a range of species but are mainly
deciduous. At Alice Holt the predominant tree species is oak
(Quercus robur) with hazel (Corylus avellana) and hawthorn (Cra-
taegus monogyna) making up the understorey (Wilkinson et al.,
2012). The above and below ground tree biomass is estimated to
be 13.4 kg C m�2 (excluding shrubs and ground flora, based on 2009
data) and the mean peak leaf area index is 5.9 m2 m�2 (1999e2010
data).

2.2. Instrumentation and data processing

Net fluxes of CO2 between the surface and atmosphere were
obtained for 30-min intervals using the eddy covariance (EC)
technique at each site. The micrometeorological sign convention is
used, i.e. negative flux indicates CO2 uptake by the surface and
positive flux indicates CO2 release. The instrumental setup is
summarised in Table 2. Equipment was mounted on towers (a
square-section tower at Alice Holt, lattice towers in London and a
pneumatic mast in Swindon) to ensure that measurements were
made well above the mean height of the roughness elements (zH)
and above the roughness sub-layer (>2 zH for U and S; > 1.3 zH for
W, Tables 1 and 2). Sites were carefully selected to ensure the
measurements are representative of the local environment.
Although the source areas vary with meteorological conditions,
footprint models indicate that the majority of the flux usually
originates from within a few hundred metres (approximately
200e400 m) of the towers; at night these distances increase (to
around 600e700 m) as instability decreases. The variation in land
cover around each tower is far smaller than the difference in land
cover between the three sites. Full characterisation is provided in
the individual site papers.

Raw data from the sonic and gas analyser were processed using
LiCOR's EddyPro software (S, W) or ECPACK (van Dijk et al., 2004)
(U). The quality control procedures applied were selected based on
the requirements of each site, dependent on their different char-
acteristics (see Kotthaus and Grimmond, 2012, Ward et al., 2013
and Wilkinson et al., 2012 for details). This was judged to be the
most appropriate methodology, rather than attempting to apply a
single set of tests across all sites which may not be suitable for each
environment. All sites were subject to the following standard
procedures: adjustment for the lag time between sonic anemom-
eter and gas analyser; correction of sonic temperature for humidity;
correction for spectral losses. The planar fit coordinate trans-
formation was applied to the London data; double coordinate
rotation was used for Swindon and Alice Holt. Data from all sites
were despiked and subjected to physically-reasonable threshold
checks and data were removed during times of instrument mal-
function. In London the influence of micro-scale building emissions
was removed from the local-scale fluxes using an algorithm based
on the statistical characteristics of turbulent events (Kotthaus and
Grimmond, 2012); this procedure is not required at the less
urbanised sites. No friction velocity (u*) threshold was used to
reject CO2 fluxes at the suburban or urban site because the rough

Table 1
Site characteristics (values are those given in the respective publications; surface
cover is calculated at U for the average footprint climatology (Kotthaus and
Grimmond, 2014b), at S for 500 m around the tower (Ward et al., 2013) and at W
for the woodland area (Wilkinson et al., 2012)). zH is the average building or tree
height; zd zero plane displacement height; z0 roughness length.

London (U) Swindon (S) Alice Holt (W)

Location 51�300 N 0�070 W 51�350 N 1�480 W 51�090 N 0�510 W
Classification Urban Suburban Woodland
Description High density central

business district
Low-rise
residential

Deciduous oak
plantation

zH [m] 22.0 5.5 21.0
zd [m] 14.2 3.5 15.3
z0 [m] 1.9 0.5 2.2
Surface cover [%]
Impervious 43 33 0
Buildings 38 16 0
Vegetation (trees) 5 (2) 44 (9) 98 (97)
Open water 14 0 0.5
Bare soil 0 6 1.5
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