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a b s t r a c t

The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating
exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages
the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely
when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation
techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with
monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary
kriging with only the range parameter calibrated in an exponential variogram is the generally superior
method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for
calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available
to apply the methodology to other sparsely monitored constituents.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Adverse health impacts of ground-level ozone are well-
documented. Several epidemiological studies have indicated the
short and long term adverse effects of tropospheric ozone on health
(Kinney et al., 1988; Romieu et al., 1996; Gryparis et al., 2004). The
short term effects of exposure to ozone include increasing hospital
admissions and emergency department visits and chronic respi-
ratory conditions (Bell et al., 2004; Lippmann, 1993). Elevated
concentration of ozone also results in dailymortality for respiratory
as well as cardiovascular diseases (Stafoggia et al., 2010; Bell et al.,
2004; Gryparis et al., 2004; Ito et al., 2005). Adverse health effects
have led to standards such as the 8-h maximum average by the
World Health Organization (2006).

Estimating exposure levels in urban areas is indispensable in the
formulation of responses. Cost constraints typically limit moni-
toring ozone to a small number of stations in an urban area of
concern. Interpolation methods may be heavily relied upon to es-
timate concentrations throughout such an area. Mulholland et al.

(1998) apply universal kriging to interpolate 1-h and 8-h data
from 10 stations in the area of Atlanta, Georgia, USA. Rojas-
Avellaneda (2007) compares inverse distance weighting and
other interpolation methods for peak-hour ozone data from 16
stations in Mexico City, Mexico. Sanchez et al. (2009) apply a
kriging method to interpolate data from 8 stations in the Guada-
lajara urban area of Mexico. Son et al. (2010) apply of variety of
interpolation techniques for 8-h ozone concentration data from 13
stations in the urban area of Ulsan, Korea. Other studies, such as
that of Temiyasathis et al. (2009), who use 8-h ozone data from 14
stations in the Dallas-Fort Worth area of Texas, rely on sophisti-
cated procedures that incorporatemeteorological data or models of
atmospheric dynamics in conjunction with an interpolation
method such as kriging. In a study for Madrid, Spain, Montero et al.
(2010) apply ordinary kriging to annualized ozone data from 27
continuous monitoring stations, an unusually high number for a
single urban area.We the authors of this paper need to estimate 8-h
ozone exposure in the area of San Antonio, Texas, USA, which has at
most 11 active ozone monitoring stations. This present study is
motivated by our need to clarify for ourselves which interpolation
method would be most suitable, given that we are unable to sac-
rifice a portion of so few stations for validation.

Spatial interpolationmethods typically involve the calibration of
parameters so that the values predicted most closely match the
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values measured at the monitoring stations. Sound statistical
practice requires that observed data be separated into two subsets,
a calibration or “training” subset, and a validation or “unseen”
subset. However, in the case of 8-h ozone concentrations in urban
areas, the number of monitoring stations is typically too low to
allow for sacrificing a portion for validation. Yet when the number
of monitoring stations is low, the risk of overfitting is great, and
validation is most needed.

One method often used to help compensate for the unavail-
ability of true validation data is a cross-validation process in which
one observed data point at a time is excluded on a rotating basis
(e.g., Son et al., 2010). This process, however, presents complica-
tions especially when the interpolation model contains parameters
which are to be calibrated. In such cases, the model is initially
calibrated to minimize the error function for the set of included
points, and then the resulting residual (or error) is determined at
the excluded point. This process is repeated until each point has
had a turn at being excluded, and the distribution of residuals that
occur at the excluded points might then be assumed to represent
the distribution of errors in predicting concentrations at points
where there are no monitoring stations. However, each set of
included points yields a different set of parameter estimates. A
single set of parameter estimates must be used for predicting
concentrations throughout the entire area of concern. Therefore,
the parameters must be re-calibrated to minimize the residual
function at all the excluded points simultaneously, as is done in
conventional (as opposed to one-at-a-time cross-validation) cali-
bration. Now, which residuals are to be used along with the
conventionally calibrated parameters to represent the distribution
of residuals expected to occur at the non-monitored points? If the
residuals generated by the conventional calibration are used, the
entire one-at-a-time cross-validation has little value, as nothing is
used from it. If the residuals associated with the one-at-a-time
cross-validation are used, they do not correspond to the actual
parameter values used in the model for predicting concentrations
at non-monitored points, and justification for their usage, while not
impossible, becomes complicated.

As the set of points used in the one-at-a-time cross-validation
process becomes large, we may feel more confident that the re-
siduals generated are representative of the residuals that would be
found at non-monitored points. This is because the possibility of
overfitting, i.e., the adjustment of parameter values to random ef-
fects rather than to actual phenomena, becomes less as the set of
points becomes large relative to the number of parameters to be
calibrated. Yet the question remains as to how large that set needs
to be. This question needs to be answered by testing against truly
unseen (validation) data. In our literature review, we did not find
any study which utilizes a validation subset to truly validate any
interpolation method for 8-h ozone concentrations in urban areas.

Presently, there is no reliable guideline or “rule of thumb” that
would allow us to be reasonably confident a priori that overfitting is
not occurring in any particular interpolation method applied to an
8-h ozone data set in an urban area. The likelihood of overfitting is
not easily discerned because it depends on a variety of interacting
factors, including the ratio of the number of parameters to the
number of data points, constraints assigned to possible parameter
values, and how well the structure of the model represents the
underlying phenomena (e.g., Whittaker et al., 2010). However, if
particular models and parameters are applied to various data sets
representing the same basic underlying phenomena repeatedly (in
our case, 8-h ozone in urban regions), and checked against vali-
dation data, one would expect a rule of thumb to emerge regarding
which models and parameters are most appropriate, and how large
the data sets must be to avoid overfitting. Then one could proceed
with reasonable confidence in applying the tested interpolation

methods and parameters where the sparseness of data makes
validation impractical. This study is an effort toward developing
such a rule of thumb.

More sophisticated methods may be used for estimating 8-h
ozone concentrations between monitoring stations than are pre-
sented in this study. Thesemethodsmay includemodels that utilize
land use classifications, ozone source locations, meteorological
conditions, dynamics of dispersion and atmospheric chemistry, and
other sophisticated measures (e.g., Xing et al., 2011; Carslaw and
Ropkins, 2012). Such efforts require more resources. This paper
deliberately excludes such additional information for the sake of
developing screening tools that may be quickly and easily used.
Simple methods such as those reviewed in this study are to be
utilized first. If they yield confidence intervals adequate for
decision-making, then resources need not be wasted on more so-
phisticated efforts.

2. Data and methods

2.1. Data

We selected two urban areas with exceptionally large and dense monitoring
networks so that a portion of data may be reserved for validation e the Los Angeles/
Riverside, California, USA urban area (herein referred to as the “Los Angeles area”),
which has up to 27 active stations, and the Houston/Galveston, Texas, USA urban
area (herein referred to as the “Houston area”) which has up to 42 active stations. A
shapefile of the urban populated areas as of the year 2010 was obtained from the
United States Census Bureau at http://www2.census.gov/geo/tiger/TIGER2010/UA/
2010/. ArcGIS 10 was used to develop Fig. 1.

For each of the years 2009, 2010, and 2011, the dates having the maximum 8-h
ozone concentration for the Los Angeles area and the Houston area were selected.
For the Los Angeles area, all of these dates fell on aweekend, and so, to help ensure a
better representation of the variety of spatial distributions, the date with the second
highest 8-hr average was chosen for 2011, as this fell on a weekday. Hourly ozone
concentrations for Houston area were obtained through the Texas Commission on
Environmental Quality (TCEQ) at http://www.tceq.texas.gov/cgi-bin/compliance/
monops/daily_summary.pl. The data is from stations forming TCEQ’s Region 12.
Hourly data for the Los Angeles area were obtained from the California Environ-
mental Protection Agency Air Resources Board (ARB) at http://www.arb.ca.gov/
adam/hourly/hourly1.php, and are of the ARB’s Region 61 data. Ozone analyzers
and their calibration are to meet the requirements of Title 40 of the United States
Code of Federal Regulations, Part 53. Geographic coordinates were obtained through
links at these TCEQ and ARB websites, and then projected using the GEOmap (Lees,
2012) package of R statistical software version 15.1 (R Core Team, 2012).

For each of the dates at least one of the monitoring stations was inactive due to
malfunctioning or maintenance, so that the exact number of data points varied. The
dates and numbers of stations having available 8-h ozone data are shown in Table 1
for each urban area. Also shown is the average area covered per station. As is dis-
cussed below, calibration sets of size 10 and 20would be randomly selected from the
full data sets. The last column of Table 1 displays the approximate area covered per
station for the calibrations sets of size 10.

2.2. Creation of calibration and validation sets

A comparison of interpolation methods cannot be achieved without separating
each of the six sets of data into calibration and validation sets. It is not unusual for
some urban areas to be limited to approximately 10 ozone monitoring stations,
while it is unusual for them to exceed 20 stations. We therefore chose calibration set
sizes of 10 and 20. An exception is the October 22, 2011 dataset for the Los Angeles
area, for which the calibration set sizes were 10 and 14 due to the desire to have the
validation set size to be no fewer than 7.

Any particular randomly chosen calibration subset may unfairly favor one
interpolation over another due to effects that are merely random. The number of all
possible sets is extremely large. We limited the number of calibration sets randomly
selected from each data set to approximately 5,000.

The expected number of times that each data point would be selected was the
same for all data points, and the urban area was subdivided such that each set
displayed a realistic spread.

2.3. Selection of interpolation methods

Data was explored for autocorrelation and trends. In Fig. 1 each 8-h ozone
measurement is represented by a circle of size proportional to its value. These
measured values range from 31.0 parts per billion by volume (ppbv) to 112.5 ppbv for
the Houston area data sets, and from 10.8 ppbv to 117.1 ppbv for the Los Angeles area
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